BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31364194)

  • 21. mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA.
    Sas-Chen A; Nir R; Schwartz S
    Methods Mol Biol; 2021; 2192():103-115. PubMed ID: 33230769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudouridine-Free Escherichia coli Ribosomes.
    O'Connor M; Leppik M; Remme J
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29180357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assaying the Molecular Determinants and Kinetics of RNA Pseudouridylation by H/ACA snoRNPs and Stand-Alone Pseudouridine Synthases.
    Czekay DP; Schultz SK; Kothe U
    Methods Mol Biol; 2021; 2298():357-378. PubMed ID: 34085255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in
    Khonsari B; Klassen R
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The MAP kinase-activated protein kinase Rck2p plays a role in rapamycin sensitivity in Saccharomyces cerevisiae and Candida albicans.
    Li X; Huang X; Zhao J; Zhao J; Wei Y; Jiang L
    FEMS Yeast Res; 2008 Aug; 8(5):715-24. PubMed ID: 18625027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans.
    Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ
    Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity.
    Motorin Y; Keith G; Simon C; Foiret D; Simos G; Hurt E; Grosjean H
    RNA; 1998 Jul; 4(7):856-69. PubMed ID: 9671058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing.
    Begik O; Lucas MC; Pryszcz LP; Ramirez JM; Medina R; Milenkovic I; Cruciani S; Liu H; Vieira HGS; Sas-Chen A; Mattick JS; Schwartz S; Novoa EM
    Nat Biotechnol; 2021 Oct; 39(10):1278-1291. PubMed ID: 33986546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells.
    Guzzi N; Cieśla M; Ngoc PCT; Lang S; Arora S; Dimitriou M; Pimková K; Sommarin MNE; Munita R; Lubas M; Lim Y; Okuyama K; Soneji S; Karlsson G; Hansson J; Jönsson G; Lund AH; Sigvardsson M; Hellström-Lindberg E; Hsieh AC; Bellodi C
    Cell; 2018 May; 173(5):1204-1216.e26. PubMed ID: 29628141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical insight into pseudouridine synthase 7 (PUS7) as a novel interactor of sirtuin, SIRT1.
    Dalal S; Deshmukh P; Unni S; Padavattan S; Padmanabhan B
    Biochem Biophys Res Commun; 2019 Oct; 518(3):598-604. PubMed ID: 31451225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural basis of mRNA recognition and binding by yeast pseudouridine synthase PUS1.
    Grünberg S; Doyle LA; Wolf EJ; Dai N; Corrêa IR; Yigit E; Stoddard BL
    PLoS One; 2023; 18(11):e0291267. PubMed ID: 37939088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudo-Seq: Genome-Wide Detection of Pseudouridine Modifications in RNA.
    Carlile TM; Rojas-Duran MF; Gilbert WV
    Methods Enzymol; 2015; 560():219-45. PubMed ID: 26253973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Arabidopsis Mitochondrial Pseudouridine Synthase Homolog FCS1 Plays Critical Roles in Plant Development.
    Niu Y; Zheng Y; Zhu H; Zhao H; Nie K; Wang X; Sun L; Song CP
    Plant Cell Physiol; 2022 Jul; 63(7):955-966. PubMed ID: 35560171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast.
    Han L; Kon Y; Phizicky EM
    RNA; 2015 Feb; 21(2):188-201. PubMed ID: 25505024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code.
    Safra M; Nir R; Farouq D; Vainberg Slutskin I; Schwartz S
    Genome Res; 2017 Mar; 27(3):393-406. PubMed ID: 28073919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PPUS: a web server to predict PUS-specific pseudouridine sites.
    Li YH; Zhang G; Cui Q
    Bioinformatics; 2015 Oct; 31(20):3362-4. PubMed ID: 26076723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus.
    Li Y; Wu S; Ye K
    Nucleic Acids Res; 2024 May; 52(8):4644-4658. PubMed ID: 38375885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ARO4 gene of Candida albicans encodes a tyrosine-sensitive DAHP synthase: evolution, functional conservation and phenotype of Aro3p-, Aro4p-deficient mutants.
    Sousa S; McLaughlin MM; Pereira SA; VanHorn S; Knowlton R; Brown JR; Nicholas RO; Livi GP
    Microbiology (Reading); 2002 May; 148(Pt 5):1291-1303. PubMed ID: 11988503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism.
    Staniszewska M; Gizińska M; Kazek M; de Jesús González-Hernández R; Ochal Z; Mora-Montes HM
    Braz J Microbiol; 2020 Mar; 51(1):5-14. PubMed ID: 31486049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability.
    Antonicka H; Choquet K; Lin ZY; Gingras AC; Kleinman CL; Shoubridge EA
    EMBO Rep; 2017 Jan; 18(1):28-38. PubMed ID: 27974379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.