These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31364219)

  • 1. Artificial Sensory Memory.
    Wan C; Cai P; Wang M; Qian Y; Huang W; Chen X
    Adv Mater; 2020 Apr; 32(15):e1902434. PubMed ID: 31364219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Artificial Sensory Neuron with Tactile Perceptual Learning.
    Wan C; Chen G; Fu Y; Wang M; Matsuhisa N; Pan S; Pan L; Yang H; Wan Q; Zhu L; Chen X
    Adv Mater; 2018 Jul; 30(30):e1801291. PubMed ID: 29882255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired and Low-Power 2D Machine Vision with Adaptive Machine Learning and Forgetting.
    Dodda A; Jayachandran D; Subbulakshmi Radhakrishnan S; Pannone A; Zhang Y; Trainor N; Redwing JM; Das S
    ACS Nano; 2022 Dec; 16(12):20010-20020. PubMed ID: 36305614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Memory of a Neuromorphic Transistor with Multi-Sensory Signal Fusion.
    Shao L; Xu X; Liu Y; Zhao Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35272-35279. PubMed ID: 37461139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems.
    Lu Q; Zhao Y; Huang L; An J; Zheng Y; Yap EH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromorphic Devices for Bionic Sensing and Perception.
    Zeng M; He Y; Zhang C; Wan Q
    Front Neurosci; 2021; 15():690950. PubMed ID: 34267624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic sensory systems.
    Liu SC; Delbruck T
    Curr Opin Neurobiol; 2010 Jun; 20(3):288-95. PubMed ID: 20493680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors.
    Merces L; Ferro LMM; Nawaz A; Sonar P
    Adv Sci (Weinh); 2024 Jul; 11(27):e2305611. PubMed ID: 38757653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Skin Perception.
    Wang M; Luo Y; Wang T; Wan C; Pan L; Pan S; He K; Neo A; Chen X
    Adv Mater; 2021 May; 33(19):e2003014. PubMed ID: 32930454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics.
    Yang JC; Mun J; Kwon SY; Park S; Bao Z; Park S
    Adv Mater; 2019 Nov; 31(48):e1904765. PubMed ID: 31538370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic Binarized Polariton Networks.
    Mirek R; Opala A; Comaron P; Furman M; Król M; Tyszka K; Seredyński B; Ballarini D; Sanvitto D; Liew TCH; Pacuski W; Suffczyński J; Szczytko J; Matuszewski M; Piętka B
    Nano Lett; 2021 May; 21(9):3715-3720. PubMed ID: 33635656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors.
    Shim H; Jang S; Thukral A; Jeong S; Jo H; Kan B; Patel S; Wei G; Lan W; Kim HJ; Yu C
    Proc Natl Acad Sci U S A; 2022 Jun; 119(23):e2204852119. PubMed ID: 35648822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.