BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31364349)

  • 1. Interfacial Triggering of Conductive Filament Growth in Organic Flexible Memristor for High Reliability and Uniformity.
    Lee SH; Park HL; Kim MH; Kang S; Lee SD
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30108-30115. PubMed ID: 31364349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer.
    Park HL; Kim MH; Kim MH; Lee SH
    Nanoscale; 2020 Nov; 12(44):22502-22510. PubMed ID: 33174583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic Conductive Filament Formation and Evolution for Improved Switching Uniformity in Embedded Metal-Oxide-Based Memristors─A Phase-Field Study.
    Zhang K; Ganesh P; Cao Y
    ACS Appl Mater Interfaces; 2023 May; 15(17):21219-21227. PubMed ID: 37083295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Flexible Polymer Memristor Based on Stable Filamentary Switching.
    Zhang X; Wu C; Lv Y; Zhang Y; Liu W
    Nano Lett; 2022 Sep; 22(17):7246-7253. PubMed ID: 35984717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric-Field Concentrators.
    You BK; Kim JM; Joe DJ; Yang K; Shin Y; Jung YS; Lee KJ
    ACS Nano; 2016 Oct; 10(10):9478-9488. PubMed ID: 27718554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.
    Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System.
    Jang BC; Kim S; Yang SY; Park J; Cha JH; Oh J; Choi J; Im SG; Dravid VP; Choi SY
    Nano Lett; 2019 Feb; 19(2):839-849. PubMed ID: 30608706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Reliable Molybdenum Disulfide-Based Synaptic Memristor Using a Copper Migration-Controlled Structure.
    Ahn W; Jeong HB; Oh J; Hong W; Cha JH; Jeong HY; Choi SY
    Small; 2023 Aug; 19(33):e2300223. PubMed ID: 37093184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow Set Voltage and Enhanced Switching Reliability for Resistive Random-Access Memory Enabled by an Electrodeposited Nanocone Array.
    Xue Q; Peng Y; Cao L; Xia Y; Liang J; Chen CC; Li M; Hang T
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25710-25721. PubMed ID: 35604125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO
    Dastgeer G; Afzal AM; Aziz J; Hussain S; Jaffery SHA; Kim DK; Imran M; Assiri MA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Performance Full-Inorganic Flexible Memristor with Combined Resistance-Switching.
    Zhu Y; Liang JS; Mathayan V; Nyberg T; Primetzhofer D; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2022 May; 14(18):21173-21180. PubMed ID: 35477302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Growth of Fine Multifilaments in Polymer-Based Memristive Devices Via the Conduction Control.
    Yang H; Wang Z; Guo X; Su H; Sun K; Yang D; Xiao W; Wang Q; He D
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34370-34377. PubMed ID: 32627526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Definition of a Localized Conducting Path via Suppressed Charge Injection in Oxide Memristors for Stable Practical Hardware Neural Networks.
    Kim H; Lee J; Kim HW; Woo J; Kim MH; Lee SH
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-Inorganic Flexible Ag
    Zhu Y; Liang JS; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43482-43489. PubMed ID: 36102604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Synapse Consisted of TiSbTe/SiC
    Chen L; Ma Z; Leng K; Chen T; Hu H; Yang Y; Li W; Xu J; Xu L; Chen K
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SiO
    Guo X; Wang Q; Lv X; Yang H; Sun K; Yang D; Zhang H; Hasegawa T; He D
    Nanoscale; 2020 Feb; 12(7):4320-4327. PubMed ID: 32043511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory.
    Vishwanath SK; Woo H; Jeon S
    Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.
    Ling H; Yi M; Nagai M; Xie L; Wang L; Hu B; Huang W
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28707713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Memristor Devices Using Hybrid Polymer/Electrodeposited GeSbTe Nanoscale Thin Films.
    Jaafar AH; Meng L; Zhang T; Guo D; Newbrook D; Zhang W; Reid G; de Groot CH; Bartlett PN; Huang R
    ACS Appl Nano Mater; 2022 Dec; 5(12):17711-17720. PubMed ID: 36583121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved uniformity in resistive switching behaviors by embedding Cu nanodots.
    Yuan M; Dong X; Niu Y; Liu B; Chen X; Zheng D; Dong A; Wang H
    Nanotechnology; 2020 Oct; 31(40):405301. PubMed ID: 32512546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.