These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Loading rates in unilateral transfemoral amputees with running-specific prostheses across a range of speeds. Hobara H; Sakata H; Amma R; Hisano G; Hashizume S; Baum BS; Usui F Clin Biomech (Bristol); 2020 May; 75():104999. PubMed ID: 32339944 [TBL] [Abstract][Full Text] [Related]
23. A non-invasive wearable sensory leg neuroprosthesis: mechanical, electrical and functional validation. Basla C; Chee L; Valle G; Raspopovic S J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34915454 [No Abstract] [Full Text] [Related]
24. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis. Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876 [TBL] [Abstract][Full Text] [Related]
25. Upper body accelerations during level walking in transtibial amputees. Paradisi F; Di Stanislao E; Summa A; Brunelli S; Traballesi M; Vannozzi G Prosthet Orthot Int; 2019 Apr; 43(2):204-212. PubMed ID: 30112983 [TBL] [Abstract][Full Text] [Related]
26. The dead spot phenomenon in prosthetic gait: Quantified with an analysis of center of pressure progression and its velocity in the sagittal plane. Klenow TD; Kahle JT; Highsmith MJ Clin Biomech (Bristol); 2016 Oct; 38():56-62. PubMed ID: 27580450 [TBL] [Abstract][Full Text] [Related]
27. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Nolan L; Wit A; Dudziñski K; Lees A; Lake M; Wychowañski M Gait Posture; 2003 Apr; 17(2):142-51. PubMed ID: 12633775 [TBL] [Abstract][Full Text] [Related]
28. Maximum Swing Flexion or Gait Symmetry: A Comparative Evaluation of Control Targets on Metabolic Energy Expenditure of Amputee Using Intelligent Prosthetic Knee. Cao W; Zhao W; Yu H; Chen W; Meng Q Biomed Res Int; 2018; 2018():2898546. PubMed ID: 30584532 [TBL] [Abstract][Full Text] [Related]
29. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation. Kobayashi T; Koh MWP; Jor A; Hisano G; Murata H; Ichimura D; Hobara H Front Bioeng Biotechnol; 2022; 10():1041060. PubMed ID: 36727041 [TBL] [Abstract][Full Text] [Related]
30. Real-time gait event detection for lower limb amputees using a single wearable sensor. Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407 [TBL] [Abstract][Full Text] [Related]
31. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role? Boutwell E; Stine R; Gard S Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010 [TBL] [Abstract][Full Text] [Related]
32. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
33. Force transmission capacity of the lower limb during walking of amputees with bone-anchored prostheses compared with socket prostheses and persons with hip replacements. Blumentritt S; Schmalz T; Layher F; Timmermann A; Aschoff HH Clin Biomech (Bristol); 2023 Dec; 110():106099. PubMed ID: 37832468 [TBL] [Abstract][Full Text] [Related]
34. Gait compensatory mechanisms in unilateral transfemoral amputees. Harandi VJ; Ackland DC; Haddara R; Lizama LEC; Graf M; Galea MP; Lee PVS Med Eng Phys; 2020 Mar; 77():95-106. PubMed ID: 31919013 [TBL] [Abstract][Full Text] [Related]
35. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
36. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning. Shell CE; Segal AD; Klute GK; Neptune RR Clin Biomech (Bristol); 2017 Nov; 49():56-63. PubMed ID: 28869812 [TBL] [Abstract][Full Text] [Related]
37. Effects of extended powered knee prosthesis stance time via visual feedback on gait symmetry of individuals with unilateral amputation: a preliminary study. Brandt A; Riddick W; Stallrich J; Lewek M; Huang HH J Neuroeng Rehabil; 2019 Sep; 16(1):112. PubMed ID: 31511010 [TBL] [Abstract][Full Text] [Related]
38. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM; Scally AJ; Buckley JG Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391 [TBL] [Abstract][Full Text] [Related]
39. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Strike SC; Arcone D; Orendurff M Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465 [TBL] [Abstract][Full Text] [Related]
40. Walking abilities improvements are associated with pelvis and trunk kinematic adaptations in transfemoral amputees after rehabilitation. Persine S; Leteneur S; Gillet C; Bassement J; Charlaté F; Simoneau-Buessinger E Clin Biomech (Bristol); 2022 Apr; 94():105619. PubMed ID: 35306365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]