These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31364628)

  • 1. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superheating of monolayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Apr; 146(13):134703. PubMed ID: 28390346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AB-stacked square-like bilayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    Phys Chem Chem Phys; 2016 Aug; 18(32):22039-46. PubMed ID: 27468430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Puckered Zigzag Monolayer Ice: Does a Confined Flat Four-Coordinated Monolayer Ice Always Have a Corresponding Puckered Phase?
    Wei L; Bai Q; Li X; Liu Z; Li C; Cui Y; Shen L; Zhu C; Fang W
    J Phys Chem Lett; 2023 Oct; 14(39):8890-8895. PubMed ID: 37767947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Phys; 2014 May; 140(18):184507. PubMed ID: 24832288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    ACS Nano; 2015 Dec; 9(12):12197-204. PubMed ID: 26575824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic characteristics in monolayer square ice.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Jul; 147(4):044706. PubMed ID: 28764369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric Profile and Electromelting of a Monolayer of Water Confined in Graphene Slit Pore.
    Majumdar J; Moid M; Dasgupta C; Maiti PK
    J Phys Chem B; 2021 Jun; 125(24):6670-6680. PubMed ID: 34107687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous and First-Order Liquid-Solid Phase Transitions in Two-Dimensional Water.
    Ma N; Zhao X; Liang X; Zhu W; Sun Y; Zhao W; Zeng XC
    J Phys Chem B; 2022 Nov; 126(43):8892-8899. PubMed ID: 36282573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two rhombic ice phases from aqueous salt solutions under graphene confinement.
    Du W; Wang Y; Yang J; Chen J
    Phys Rev E; 2024 Jun; 109(6):L062103. PubMed ID: 39020996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.