BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31364664)

  • 1. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fluorinase from Streptomyces cattleya is also a chlorinase.
    Deng H; Cobb SL; McEwan AR; McGlinchey RP; Naismith JH; O'Hagan D; Robinson DA; Spencer JB
    Angew Chem Int Ed Engl; 2006 Jan; 45(5):759-62. PubMed ID: 16370017
    [No Abstract]   [Full Text] [Related]  

  • 3. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.
    Cobb SL; Deng H; McEwan AR; Naismith JH; O'Hagan D; Robinson DA
    Org Biomol Chem; 2006 Apr; 4(8):1458-60. PubMed ID: 16604208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of enzymatic fluorination in Streptomyces cattleya.
    Zhu X; Robinson DA; McEwan AR; O'Hagan D; Naismith JH
    J Am Chem Soc; 2007 Nov; 129(47):14597-604. PubMed ID: 17985882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorinase mediated C-(18)F bond formation, an enzymatic tool for PET labelling.
    Deng H; Cobb SL; Gee AD; Lockhart A; Martarello L; McGlinchey RP; O'Hagan D; Onega M
    Chem Commun (Camb); 2006 Feb; (6):652-4. PubMed ID: 16446840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterisation of 5'-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya.
    Schaffrath C; Deng H; O'Hagan D
    FEBS Lett; 2003 Jul; 547(1-3):111-4. PubMed ID: 12860396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.
    Lohman DC; Edwards DR; Wolfenden R
    J Am Chem Soc; 2013 Oct; 135(39):14473-5. PubMed ID: 24041082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function.
    Timmins A; de Visser SP
    Adv Protein Chem Struct Biol; 2015; 100():113-51. PubMed ID: 26415843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of a marine bacterial SAM-dependent chlorinase.
    Eustáquio AS; Pojer F; Noel JP; Moore BS
    Nat Chem Biol; 2008 Jan; 4(1):69-74. PubMed ID: 18059261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-cell catalysis by surface display of fluorinase on Escherichia coli using N-terminal domain of ice nucleation protein.
    Feng X; Jin M; Huang W; Liu W; Xian M
    Microb Cell Fact; 2021 Oct; 20(1):206. PubMed ID: 34715875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy.
    Yokoyama K; Ohmori D; Kudo F; Eguchi T
    Biochemistry; 2008 Aug; 47(34):8950-60. PubMed ID: 18672902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of a potential difluoromethyl-nucleoside substrate with the fluorinase enzyme.
    Thompson S; McMahon SA; Naismith JH; O'Hagan D
    Bioorg Chem; 2016 Feb; 64():37-41. PubMed ID: 26642178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites in vitro.
    Kittilä T; Calero P; Fredslund F; Lowe PT; Tezé D; Nieto-Domínguez M; O'Hagan D; Nikel PI; Welner DH
    Microb Biotechnol; 2022 May; 15(5):1622-1632. PubMed ID: 35084776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase.
    Jiang Y; Yao M; Niu H; Wang W; He J; Qiao B; Li B; Dong M; Xiao W; Yuan Y
    J Agric Food Chem; 2024 Jan; 72(2):1203-1212. PubMed ID: 38179953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinase mediated chemoenzymatic synthesis of [(18)F]-fluoroacetate.
    Li XG; Domarkas J; O'Hagan D
    Chem Commun (Camb); 2010 Nov; 46(41):7819-21. PubMed ID: 20852791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.