BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31364685)

  • 21. A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis.
    Sukumaran SK; Fu NY; Tin CB; Wan KF; Lee SS; Yu VC
    Mol Cell; 2010 Mar; 37(6):768-83. PubMed ID: 20347420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins.
    Abu-Hamad S; Arbel N; Calo D; Arzoine L; Israelson A; Keinan N; Ben-Romano R; Friedman O; Shoshan-Barmatz V
    J Cell Sci; 2009 Jun; 122(Pt 11):1906-16. PubMed ID: 19461077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells.
    Bobba A; Amadoro G; La Piana G; Petragallo VA; Calissano P; Atlante A
    FEBS Lett; 2015 Feb; 589(5):651-8. PubMed ID: 25647035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability.
    Magrì A; Belfiore R; Reina S; Tomasello MF; Di Rosa MC; Guarino F; Leggio L; De Pinto V; Messina A
    Sci Rep; 2016 Oct; 6():34802. PubMed ID: 27721436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Multicellular Effects of VDAC1 N-Terminal-Derived Peptide.
    Anand U; Shteinfer-Kuzmine A; Sela G; Santhanam M; Gottschalk B; Boujemaa-Paterski R; Medalia O; Graier WF; Shoshan-Barmatz V
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics.
    Shoshan-Barmatz V; Krelin Y; Shteinfer-Kuzmine A; Arif T
    Front Oncol; 2017; 7():154. PubMed ID: 28824871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1.
    Zhang D; Yip YM; Li L
    Mitochondrion; 2016 Sep; 30():222-8. PubMed ID: 27544294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II.
    Haloi N; Wen PC; Cheng Q; Yang M; Natarajan G; Camara AKS; Kwok WM; Tajkhorshid E
    Commun Biol; 2021 Jun; 4(1):667. PubMed ID: 34083717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The voltage-dependent anion channel-1 modulates apoptotic cell death.
    Zaid H; Abu-Hamad S; Israelson A; Nathan I; Shoshan-Barmatz V
    Cell Death Differ; 2005 Jul; 12(7):751-60. PubMed ID: 15818409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway.
    Leone A; Roca MS; Ciardiello C; Terranova-Barberio M; Vitagliano C; Ciliberto G; Mancini R; Di Gennaro E; Bruzzese F; Budillon A
    Free Radic Biol Med; 2015 Dec; 89():287-99. PubMed ID: 26409771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo.
    Shoshan-Barmatz V; Keinan N; Abu-Hamad S; Tyomkin D; Aram L
    Biochim Biophys Acta; 2010; 1797(6-7):1281-91. PubMed ID: 20214874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer's disease transgenic mice: an insight into the pathogenic effects of amyloid-β.
    Cuadrado-Tejedor M; Vilariño M; Cabodevilla F; Del Río J; Frechilla D; Pérez-Mediavilla A
    J Alzheimers Dis; 2011; 23(2):195-206. PubMed ID: 20930307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VDAC1 Mediated Anticancer Activity of Gallic Acid in Human Lung Adenocarcinoma A549 Cells.
    Maimaiti A; Aili A; Kuerban H; Li X
    Anticancer Agents Med Chem; 2018; 18(2):255-262. PubMed ID: 28901260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of novel methyl jasmonate derivatives and evaluation of their biological activity in various cancer cell lines.
    Sucu BO; Ipek OS; Kurtulus SO; Yazici BE; Karakas N; Guzel M
    Bioorg Chem; 2019 Oct; 91():103146. PubMed ID: 31377389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mortalin-mediated and ERK-controlled targeting of HIF-1α to mitochondria confers resistance to apoptosis under hypoxia.
    Mylonis I; Kourti M; Samiotaki M; Panayotou G; Simos G
    J Cell Sci; 2017 Jan; 130(2):466-479. PubMed ID: 27909249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VDAC1 as a Player in Mitochondria-Mediated Apoptosis and Target for Modulating Apoptosis.
    Shoshan-Barmatz V; Krelin Y; Chen Q
    Curr Med Chem; 2017; 24(40):4435-4446. PubMed ID: 28618997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oroxylin A sensitizes non-small cell lung cancer cells to anoikis via glucose-deprivation-like mechanisms: c-Src and hexokinase II.
    Wei L; Dai Q; Zhou Y; Zou M; Li Z; Lu N; Guo Q
    Biochim Biophys Acta; 2013 Jun; 1830(6):3835-45. PubMed ID: 23500080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oligomerization of the mitochondrial protein VDAC1: from structure to function and cancer therapy.
    Shoshan-Barmatz V; Mizrachi D; Keinan N
    Prog Mol Biol Transl Sci; 2013; 117():303-34. PubMed ID: 23663973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VDAC1, mitochondrial dysfunction, and Alzheimer's disease.
    Shoshan-Barmatz V; Nahon-Crystal E; Shteinfer-Kuzmine A; Gupta R
    Pharmacol Res; 2018 May; 131():87-101. PubMed ID: 29551631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin.
    Perevoshchikova IV; Zorov SD; Kotova EA; Zorov DB; Antonenko YN
    FEBS Lett; 2010 Jun; 584(11):2397-402. PubMed ID: 20412805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.