BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31364842)

  • 1. Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells.
    Krmpot AJ; Nikolić SN; Oasa S; Papadopoulos DK; Vitali M; Oura M; Mikuni S; Thyberg P; Tisa S; Kinjo M; Nilsson L; Terenius L; Rigler R; Vukojević V
    Anal Chem; 2019 Sep; 91(17):11129-11137. PubMed ID: 31364842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM).
    Oasa S; Krmpot AJ; Nikolić SN; Clayton AHA; Tsigelny IF; Changeux JP; Terenius L; Rigler R; Vukojević V
    Anal Chem; 2021 Sep; 93(35):12011-12021. PubMed ID: 34428029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy.
    Papadopoulos DK; Krmpot AJ; Nikolić SN; Krautz R; Terenius L; Tomancak P; Rigler R; Gehring WJ; Vukojević V
    Mech Dev; 2015 Nov; 138 Pt 2():218-225. PubMed ID: 26428533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy.
    Heuvelman G; Erdel F; Wachsmuth M; Rippe K
    Eur Biophys J; 2009 Jul; 38(6):813-28. PubMed ID: 19543723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring fast dynamics in solutions and cells with a laser scanning microscope.
    Digman MA; Brown CM; Sengupta P; Wiseman PW; Horwitz AR; Gratton E
    Biophys J; 2005 Aug; 89(2):1317-27. PubMed ID: 15908582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative single-molecule imaging by confocal laser scanning microscopy.
    Vukojevic V; Heidkamp M; Ming Y; Johansson B; Terenius L; Rigler R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18176-81. PubMed ID: 19011092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Light microscopy techniques for live cell and animal imaging using fluorescent proteins].
    Tanimura A; Nezu A; Morita T
    Nihon Yakurigaku Zasshi; 2013 May; 141(5):262-7. PubMed ID: 23665557
    [No Abstract]   [Full Text] [Related]  

  • 8. Rapid single-wavelength lightsheet localization microscopy for clarified tissue.
    Chu LA; Lu CH; Yang SM; Liu YT; Feng KL; Tsai YC; Chang WK; Wang WC; Chang SW; Chen P; Lee TK; Hwu YK; Chiang AS; Chen BC
    Nat Commun; 2019 Oct; 10(1):4762. PubMed ID: 31628310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells.
    Fukushima R; Yamamoto J; Ishikawa H; Kinjo M
    Methods; 2018 May; 140-141():161-171. PubMed ID: 29572069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinhole Closure Improves Spatial Resolution in Confocal Scanning Microscopy.
    Kitamura A
    Methods Mol Biol; 2021; 2274():385-389. PubMed ID: 34050487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.
    Lee J; Miyanaga Y; Ueda M; Hohng S
    Biophys J; 2012 Oct; 103(8):1691-7. PubMed ID: 23083712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy.
    Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S
    Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies.
    Bénard M; Schapman D; Chamot C; Dubois F; Levallet G; Komuro H; Galas L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy.
    Potter SM; Wang CM; Garrity PA; Fraser SE
    Gene; 1996; 173(1 Spec No):25-31. PubMed ID: 8707052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.
    Petryayeva E; Algar WR; Medintz IL
    Appl Spectrosc; 2013 Mar; 67(3):215-52. PubMed ID: 23452487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative dosing of surfaces with fluorescent molecules: characterization of fractional monolayer coverages by counting single molecules.
    Hanley DC; Harris JM
    Anal Chem; 2001 Nov; 73(21):5030-7. PubMed ID: 11721896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells.
    Hess ST; Sheets ED; Wagenknecht-Wiesner A; Heikal AA
    Biophys J; 2003 Oct; 85(4):2566-80. PubMed ID: 14507719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4alphaSG1 and PH4alphaSG2.
    Abrams EW; Mihoulides WK; Andrew DJ
    Development; 2006 Sep; 133(18):3517-27. PubMed ID: 16914497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.