BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31364850)

  • 1. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation.
    Li X; Li Z; Wu X; Xiong Z; Yang T; Fu Z; Liu X; Tan X; Zhong F; Wan X; Wang D; Ding X; Yang R; Hou H; Li C; Liu H; Chen K; Jiang H; Zheng M
    J Med Chem; 2020 Aug; 63(16):8723-8737. PubMed ID: 31364850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules.
    Li Z; Li X; Liu X; Fu Z; Xiong Z; Wu X; Tan X; Zhao J; Zhong F; Wan X; Luo X; Chen K; Jiang H; Zheng M
    Bioinformatics; 2019 Dec; 35(24):5354-5356. PubMed ID: 31228181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling.
    Ren Q; Qu N; Sun J; Zhou J; Liu J; Ni L; Tong X; Zhang Z; Kong X; Wen Y; Wang Y; Wang D; Luo X; Zhang S; Zheng M; Li X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38113075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinome-Wide Virtual Screening by Multi-Task Deep Learning.
    Hu J; Allen BK; Stathias V; Ayad NG; Schürer SC
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinome-Wide Profiling Prediction of Small Molecules.
    Sorgenfrei FA; Fulle S; Merget B
    ChemMedChem; 2018 Mar; 13(6):495-499. PubMed ID: 28544552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies.
    Ravikumar B; Timonen S; Alam Z; Parri E; Wennerberg K; Aittokallio T
    Cell Chem Biol; 2019 Nov; 26(11):1608-1622.e6. PubMed ID: 31521622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.
    Cichonska A; Ravikumar B; Parri E; Timonen S; Pahikkala T; Airola A; Wennerberg K; Rousu J; Aittokallio T
    PLoS Comput Biol; 2017 Aug; 13(8):e1005678. PubMed ID: 28787438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Discovery Maps, a Machine Learning Model That Visualizes and Predicts Kinome-Inhibitor Interaction Landscapes.
    Janssen APA; Grimm SH; Wijdeven RHM; Lenselink EB; Neefjes J; van Boeckel CAA; van Westen GJP; van der Stelt M
    J Chem Inf Model; 2019 Mar; 59(3):1221-1229. PubMed ID: 30372617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KinScan: AI-based rapid profiling of activity across the kinome.
    Brahma R; Shin JM; Cho KH
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Kinase Profiling To Understand the Polypharmacological Behavior of Therapeutic Molecules.
    Dutta D; Das R; Mandal C; Mandal C
    J Chem Inf Model; 2018 Jan; 58(1):68-89. PubMed ID: 29243930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
    Volkamer A; Eid S; Turk S; Jaeger S; Rippmann F; Fulle S
    J Chem Inf Model; 2015 Mar; 55(3):538-49. PubMed ID: 25557645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
    Gao Y; Davies SP; Augustin M; Woodward A; Patel UA; Kovelman R; Harvey KJ
    Biochem J; 2013 Apr; 451(2):313-28. PubMed ID: 23398362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crowdsourced mapping of unexplored target space of kinase inhibitors.
    Cichońska A; Ravikumar B; Allaway RJ; Wan F; Park S; Isayev O; Li S; Mason M; Lamb A; Tanoli Z; Jeon M; Kim S; Popova M; Capuzzi S; Zeng J; Dang K; Koytiger G; Kang J; Wells CI; Willson TM; ; Oprea TI; Schlessinger A; Drewry DH; Stolovitzky G; Wennerberg K; Guinney J; Aittokallio T
    Nat Commun; 2021 Jun; 12(1):3307. PubMed ID: 34083538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.
    Brylinski M; Skolnick J
    Mol Pharm; 2010 Dec; 7(6):2324-33. PubMed ID: 20958088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach.
    Bao L; Wang Z; Wu Z; Luo H; Yu J; Kang Y; Cao D; Hou T
    Acta Pharm Sin B; 2023 Jan; 13(1):54-67. PubMed ID: 36815050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective.
    Li YH; Wang PP; Li XX; Yu CY; Yang H; Zhou J; Xue WW; Tan J; Zhu F
    PLoS One; 2016; 11(11):e0165737. PubMed ID: 27828998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach.
    Zhao Z; Xie L; Xie L; Bourne PE
    J Med Chem; 2016 May; 59(9):4326-41. PubMed ID: 26929980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors.
    Niijima S; Shiraishi A; Okuno Y
    J Chem Inf Model; 2012 Apr; 52(4):901-12. PubMed ID: 22414491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.