These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31365015)

  • 1. Guidance of active particles at liquid-liquid interfaces near surfaces.
    Palacios LS; Katuri J; Pagonabarraga I; Sánchez S
    Soft Matter; 2019 Aug; 15(32):6581-6588. PubMed ID: 31365015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks.
    Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F
    Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and Speed in Ion-Exchange-Based Modular Phoretic Microswimmers.
    Niu R; Botin D; Weber J; Reinmüller A; Palberg T
    Langmuir; 2017 Apr; 33(14):3450-3457. PubMed ID: 28346787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stresslets Induced by Active Swimmers.
    Lauga E; Michelin S
    Phys Rev Lett; 2016 Sep; 117(14):148001. PubMed ID: 27740814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimerization and structure formation of colloids via capillarity at curved fluid interfaces.
    Read A; Kutti Kandy S; Liu IB; Radhakrishnan R; Stebe KJ
    Soft Matter; 2020 Jul; 16(25):5861-5870. PubMed ID: 32530016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic effects on the liquid-hexatic transition of active colloids.
    Negro G; Caporusso CB; Digregorio P; Gonnella G; Lamura A; Suma A
    Eur Phys J E Soft Matter; 2022 Sep; 45(9):75. PubMed ID: 36098879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Brownian motion tunable by light.
    Buttinoni I; Volpe G; Kümmel F; Volpe G; Bechinger C
    J Phys Condens Matter; 2012 Jul; 24(28):284129. PubMed ID: 22739052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed propulsion of spherical particles along three dimensional helical trajectories.
    Lee JG; Brooks AM; Shelton WA; Bishop KJM; Bharti B
    Nat Commun; 2019 Jun; 10(1):2575. PubMed ID: 31189873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments.
    Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H
    Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound.
    Rao KJ; Li F; Meng L; Zheng H; Cai F; Wang W
    Small; 2015 Jun; 11(24):2836-46. PubMed ID: 25851515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of interfaces on the nearby Brownian motion.
    Huang K; Szlufarska I
    Nat Commun; 2015 Oct; 6():8558. PubMed ID: 26438034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface's Physicochemical Properties.
    Leeth Holterhoff A; Li M; Gibbs JG
    J Phys Chem Lett; 2018 Sep; 9(17):5023-5028. PubMed ID: 30122044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Atoms and Interstitials in Two-Dimensional Colloidal Crystals.
    Dietrich K; Volpe G; Sulaiman MN; Renggli D; Buttinoni I; Isa L
    Phys Rev Lett; 2018 Jun; 120(26):268004. PubMed ID: 30004717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning with artificial microswimmers.
    Muiños-Landin S; Fischer A; Holubec V; Cichos F
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Assembly of Spheroidal Photocatalytic BiVO
    Heckel S; Grauer J; Semmler M; Gemming T; Löwen H; Liebchen B; Simmchen J
    Langmuir; 2020 Oct; 36(42):12473-12480. PubMed ID: 32825804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guiding microscale swimmers using teardrop-shaped posts.
    Davies Wykes MS; Zhong X; Tong J; Adachi T; Liu Y; Ristroph L; Ward MD; Shelley MJ; Zhang J
    Soft Matter; 2017 Jul; 13(27):4681-4688. PubMed ID: 28466943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.