BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 31365053)

  • 21. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector.
    Nourani L; Mehrizi AA; Pirahmadi S; Pourhashem Z; Asadollahi E; Jahangiri B
    Infect Genet Evol; 2023 Apr; 109():105419. PubMed ID: 36842543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
    Zhang S; Shen J; Li D; Cheng Y
    Theranostics; 2021; 11(2):614-648. PubMed ID: 33391496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum.
    Ribeiro JM; Garriga M; Potchen N; Crater AK; Gupta A; Ito D; Desai SA
    Int J Parasitol; 2018 Sep; 48(11):825-832. PubMed ID: 29906414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective.
    Song R; Zhai Q; Sun L; Huang E; Zhang Y; Zhu Y; Guo Q; Tian Y; Zhao B; Lu H
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):6919-6932. PubMed ID: 31332488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly.
    Sahoo N; Cuello V; Udawant S; Litif C; Mustard JA; Keniry M
    Methods Mol Biol; 2020; 2115():365-383. PubMed ID: 32006411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of the CRISPR/Cas system for genome editing in microalgae.
    Zhang YT; Jiang JY; Shi TQ; Sun XM; Zhao QY; Huang H; Ren LJ
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3239-3248. PubMed ID: 30877356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9 for Human Genome Engineering and Disease Research.
    Xiong X; Chen M; Lim WA; Zhao D; Qi LS
    Annu Rev Genomics Hum Genet; 2016 Aug; 17():131-54. PubMed ID: 27216776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ribozyme-mediated, multiplex CRISPR gene editing and CRISPR interference (CRISPRi) in rodent-infectious
    Walker MP; Lindner SE
    J Biol Chem; 2019 Jun; 294(24):9555-9566. PubMed ID: 31043479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
    Donohoue PD; Pacesa M; Lau E; Vidal B; Irby MJ; Nyer DB; Rotstein T; Banh L; Toh MS; Gibson J; Kohrs B; Baek K; Owen ALG; Slorach EM; van Overbeek M; Fuller CK; May AP; Jinek M; Cameron P
    Mol Cell; 2021 Sep; 81(17):3637-3649.e5. PubMed ID: 34478654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9.
    Meijers AS; Troost R; Ummels R; Maaskant J; Speer A; Nejentsev S; Bitter W; Kuijl CP
    Tuberculosis (Edinb); 2020 Sep; 124():101983. PubMed ID: 32829077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.
    Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A
    Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNAzyme activated protein-scaffolded CRISPR-Cas9 nanoassembly for genome editing.
    Zhu X; Lv MM; Liu JW; Yu RQ; Jiang JH
    Chem Commun (Camb); 2019 Jun; 55(46):6511-6514. PubMed ID: 31099367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.