BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31365186)

  • 1. Silver (Ag) doped magnesium phosphate microplatelets as next-generation antibacterial orthopedic biomaterials.
    Sikder P; Bhaduri SB; Ong JL; Guda T
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):976-989. PubMed ID: 31365186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial calcium phosphate composite cements reinforced with silver-doped magnesium phosphate (newberyite) micro-platelets.
    Sikder P; Coomar PP; Mewborn JM; Bhaduri SB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103934. PubMed ID: 32957228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Phase, Antibacterial Trimagnesium Phosphate Hydrate Coatings on Polyetheretherketone (PEEK) Implants by Rapid Microwave Irradiation Technique.
    Sikder P; Grice CR; Lin B; Goel VK; Bhaduri SB
    ACS Biomater Sci Eng; 2018 Aug; 4(8):2767-2783. PubMed ID: 33435002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass.
    El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR
    Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements.
    Chen S; Gururaj S; Xia W; Engqvist H
    J Mater Sci Mater Med; 2016 Nov; 27(11):172. PubMed ID: 27704376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, dissolution behavior, cytocompatibility, and antibacterial activity of silver-containing calcium phosphate invert glasses.
    Lee S; Nakano T; Kasuga T
    J Biomed Mater Res A; 2017 Nov; 105(11):3127-3135. PubMed ID: 28782272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward bioactive yet antibacterial surfaces.
    Sukhorukova IV; Sheveyko AN; Kiryukhantsev-Korneev PV; Zhitnyak IY; Gloushankova NA; Denisenko EA; Filippovich SY; Ignatov SG; Shtansky DV
    Colloids Surf B Biointerfaces; 2015 Nov; 135():158-165. PubMed ID: 26255161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalizing calcium phosphate biomaterials with antibacterial silver particles.
    Lee JS; Murphy WL
    Adv Mater; 2013 Feb; 25(8):1173-9. PubMed ID: 23184492
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity.
    Riaz M; Zia R; Ijaz A; Hussain T; Mohsin M; Malik A
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():308-313. PubMed ID: 29853096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.
    Zhou H; Agarwal AK; Goel VK; Bhaduri SB
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4288-94. PubMed ID: 23910345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.
    Zhou H; Luchini TJ; Bhaduri SB
    J Mater Sci Mater Med; 2012 Dec; 23(12):2831-7. PubMed ID: 22890518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders.
    Marques CF; Matos AC; Ribeiro IA; Gonçalves LM; Bettencourt A; Ferreira JM
    J Mater Sci Mater Med; 2016 Jul; 27(7):123. PubMed ID: 27300006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.
    Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U
    Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition and properties of silver-containing calcium carbonate-calcium phosphate bone cement.
    Jacquart S; Siadous R; Henocq-Pigasse C; Bareille R; Roques C; Rey C; Combes C
    J Mater Sci Mater Med; 2013 Dec; 24(12):2665-75. PubMed ID: 23892487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis.
    Vollmer NL; Spear JR; Ayers RA
    J Mater Sci Mater Med; 2016 Jun; 27(6):104. PubMed ID: 27094319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial biodegradable Mg-Ag alloys.
    Tie D; Feyerabend F; Müller WD; Schade R; Liefeith K; Kainer KU; Willumeit R
    Eur Cell Mater; 2013 Jun; 25():284-98; discussion 298. PubMed ID: 23771512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal.
    Singh RK; Awasthi S; Dhayalan A; Ferreira JM; Kannan S
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():692-701. PubMed ID: 26952474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.