These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31365241)

  • 1. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies.
    Hodshire AL; Akherati A; Alvarado MJ; Brown-Steiner B; Jathar SH; Jimenez JL; Kreidenweis SM; Lonsdale CR; Onasch TB; Ortega AM; Pierce JR
    Environ Sci Technol; 2019 Sep; 53(17):10007-10022. PubMed ID: 31365241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions.
    Gilardoni S; Massoli P; Paglione M; Giulianelli L; Carbone C; Rinaldi M; Decesari S; Sandrini S; Costabile F; Gobbi GP; Pietrogrande MC; Visentin M; Scotto F; Fuzzi S; Facchini MC
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10013-8. PubMed ID: 27551086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol.
    Kodros JK; Papanastasiou DK; Paglione M; Masiol M; Squizzato S; Florou K; Skyllakou K; Kaltsonoudis C; Nenes A; Pandis SN
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33028-33033. PubMed ID: 33318218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: Impact of agricultural biomass burning emissions.
    Sharma D; Srivastava AK; Ram K; Singh A; Singh D
    Environ Pollut; 2017 Dec; 231(Pt 1):1030-1041. PubMed ID: 28915541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions.
    Farley R; Bernays N; Jaffe DA; Ketcherside D; Hu L; Zhou S; Collier S; Zhang Q
    Environ Sci Technol; 2022 Mar; 56(6):3645-3657. PubMed ID: 35229595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass burning contributions to urban aerosols in a coastal Mediterranean city.
    Reche C; Viana M; Amato F; Alastuey A; Moreno T; Hillamo R; Teinilä K; Saarnio K; Seco R; Peñuelas J; Mohr C; Prévôt AS; Querol X
    Sci Total Environ; 2012 Jun; 427-428():175-90. PubMed ID: 22554530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM
    Wei M; Xu C; Xu X; Zhu C; Li J; Lv G
    Ecotoxicol Environ Saf; 2019 Apr; 171():37-46. PubMed ID: 30594755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China.
    Wu Z; Zheng J; Wang Y; Shang D; Du Z; Zhang Y; Hu M
    Sci Total Environ; 2017 Feb; 579():1260-1268. PubMed ID: 27914642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods.
    Al-Naiema IM; Yoon S; Wang YQ; Zhang YX; Sheesley RJ; Stone EA
    Environ Pollut; 2018 Sep; 240():34-43. PubMed ID: 29729567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires.
    Pagonis D; Selimovic V; Campuzano-Jost P; Guo H; Day DA; Schueneman MK; Nault BA; Coggon MM; DiGangi JP; Diskin GS; Fortner EC; Gargulinski EM; Gkatzelis GI; Hair JW; Herndon SC; Holmes CD; Katich JM; Nowak JB; Perring AE; Saide P; Shingler TJ; Soja AJ; Thapa LH; Warneke C; Wiggins EB; Wisthaler A; Yacovitch TI; Yokelson RJ; Jimenez JL
    Environ Sci Technol; 2023 Nov; 57(44):17011-17021. PubMed ID: 37874964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal trends in atmospheric PM₂.₅, PM₁₀, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain.
    Ram K; Sarin MM; Tripathi SN
    Environ Sci Technol; 2012 Jan; 46(2):686-95. PubMed ID: 22192056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil.
    Emygdio APM; Andrade MF; Gonçalves FLT; Engling G; Zanetti RHS; Kumar P
    Sci Total Environ; 2018 Jan; 612():809-821. PubMed ID: 28881304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review.
    Wan X; Kawamura K; Ram K; Kang S; Loewen M; Gao S; Wu G; Fu P; Zhang Y; Bhattarai H; Cong Z
    Environ Pollut; 2019 Apr; 247():216-228. PubMed ID: 30677666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records.
    Nava S; Lucarelli F; Amato F; Becagli S; Calzolai G; Chiari M; Giannoni M; Traversi R; Udisti R
    Sci Total Environ; 2015 Apr; 511():11-20. PubMed ID: 25525710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes.
    Palm BB; Peng Q; Fredrickson CD; Lee BH; Garofalo LA; Pothier MA; Kreidenweis SM; Farmer DK; Pokhrel RP; Shen Y; Murphy SM; Permar W; Hu L; Campos TL; Hall SR; Ullmann K; Zhang X; Flocke F; Fischer EV; Thornton JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29469-29477. PubMed ID: 33148807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.
    Duc HN; Bang HQ; Quang NX
    Environ Monit Assess; 2016 Feb; 188(2):106. PubMed ID: 26797812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonality in size-segregated ionic composition of ambient particulate pollutants over the Indo-Gangetic Plain: Source apportionment using PMF.
    Singh A; Rastogi N; Patel A; Singh D
    Environ Pollut; 2016 Dec; 219():906-915. PubMed ID: 27622841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter.
    Sandradewi J; Prévôt AS; Szidat S; Perron N; Alfarra MR; Lanz VA; Weingartner E; Baltensperger U
    Environ Sci Technol; 2008 May; 42(9):3316-23. PubMed ID: 18522112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.