These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 31365274)
1. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related]
2. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
3. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
4. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618 [TBL] [Abstract][Full Text] [Related]
6. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
7. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
8. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
9. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
10. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
11. Extracting lung cancer staging descriptors from pathology reports: A generative language model approach. Cho H; Yoo S; Kim B; Jang S; Sunwoo L; Kim S; Lee D; Kim S; Nam S; Chung JH J Biomed Inform; 2024 Sep; 157():104720. PubMed ID: 39233209 [TBL] [Abstract][Full Text] [Related]
12. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study. Mitchell JR; Szepietowski P; Howard R; Reisman P; Jones JD; Lewis P; Fridley BL; Rollison DE J Med Internet Res; 2022 Mar; 24(3):e27210. PubMed ID: 35319481 [TBL] [Abstract][Full Text] [Related]
14. Extracting important information from Chinese Operation Notes with natural language processing methods. Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562 [TBL] [Abstract][Full Text] [Related]
15. Automating the Capture of Structured Pathology Data for Prostate Cancer Clinical Care and Research. Odisho AY; Bridge M; Webb M; Ameli N; Eapen RS; Stauf F; Cowan JE; Washington SL; Herlemann A; Carroll PR; Cooperberg MR JCO Clin Cancer Inform; 2019 Jul; 3():1-8. PubMed ID: 31314550 [TBL] [Abstract][Full Text] [Related]
16. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
17. An automated data verification approach for improving data quality in a clinical registry. Tian Q; Liu M; Min L; An J; Lu X; Duan H Comput Methods Programs Biomed; 2019 Nov; 181():104840. PubMed ID: 30777618 [TBL] [Abstract][Full Text] [Related]
18. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
19. Identification of Preanesthetic History Elements by a Natural Language Processing Engine. Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317 [TBL] [Abstract][Full Text] [Related]
20. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]