These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Inferring temperature adaptation from thermal performance curves of somatic growth rate: The importance of growth measurements and mortality. Einum S; Bartuseviciute V; Fossen EIF; Pelabon C J Evol Biol; 2023 Feb; 36(2):424-431. PubMed ID: 36484596 [TBL] [Abstract][Full Text] [Related]
23. Decoupling of behavioural and physiological thermal performance curves in ectothermic animals: a critical adaptive trait. Monaco CJ; McQuaid CD; Marshall DJ Oecologia; 2017 Dec; 185(4):583-593. PubMed ID: 29027027 [TBL] [Abstract][Full Text] [Related]
24. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Sasaki MC; Dam HG Glob Chang Biol; 2019 Dec; 25(12):4147-4164. PubMed ID: 31449341 [TBL] [Abstract][Full Text] [Related]
25. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles. Bartheld JL; Artacho P; Bacigalupe L J Therm Biol; 2017 Dec; 70(Pt B):80-85. PubMed ID: 29108561 [TBL] [Abstract][Full Text] [Related]
26. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Schulte PM; Healy TM; Fangue NA Integr Comp Biol; 2011 Nov; 51(5):691-702. PubMed ID: 21841184 [TBL] [Abstract][Full Text] [Related]
27. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366 [TBL] [Abstract][Full Text] [Related]
28. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Peterson ML; Doak DF; Morris WF Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464 [TBL] [Abstract][Full Text] [Related]
29. A viewpoint on ecological and evolutionary study of plant thermal performance curves in a warming world. Wooliver R; Vtipilthorpe EE; Wiegmann AM; Sheth SN AoB Plants; 2022 Jun; 14(3):plac016. PubMed ID: 35615255 [TBL] [Abstract][Full Text] [Related]
30. Latitudinal variation in thermal performance of the common coral Pocillopora spp. Edmunds PJ; Combosch DJ; Torrado H; Sakai K; Sinniger F; Burgess SC J Exp Biol; 2024 Jun; 227(11):. PubMed ID: 38699869 [TBL] [Abstract][Full Text] [Related]
31. Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions. Tüzün N; Stoks R Curr Opin Insect Sci; 2018 Oct; 29():78-84. PubMed ID: 30551830 [TBL] [Abstract][Full Text] [Related]
32. Coping with temperature at the warm edge--patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. Krenek S; Petzoldt T; Berendonk TU PLoS One; 2012; 7(3):e30598. PubMed ID: 22427799 [TBL] [Abstract][Full Text] [Related]
33. Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance. Liao ML; Li GY; Wang J; Marshall DJ; Hui TY; Ma SY; Zhang YM; Helmuth B; Dong YW Glob Chang Biol; 2021 Jun; 27(11):2561-2579. PubMed ID: 33666308 [TBL] [Abstract][Full Text] [Related]
34. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Lenoir J; Graae BJ; Aarrestad PA; Alsos IG; Armbruster WS; Austrheim G; Bergendorff C; Birks HJ; Bråthen KA; Brunet J; Bruun HH; Dahlberg CJ; Decocq G; Diekmann M; Dynesius M; Ejrnaes R; Grytnes JA; Hylander K; Klanderud K; Luoto M; Milbau A; Moora M; Nygaard B; Odland A; Ravolainen VT; Reinhardt S; Sandvik SM; Schei FH; Speed JD; Tveraabak LU; Vandvik V; Velle LG; Virtanen R; Zobel M; Svenning JC Glob Chang Biol; 2013 May; 19(5):1470-81. PubMed ID: 23504984 [TBL] [Abstract][Full Text] [Related]
35. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures. Ketola T; Saarinen K J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064 [TBL] [Abstract][Full Text] [Related]
36. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. Bozinovic F; Medina NR; Alruiz JM; Cavieres G; Sabat P J Comp Physiol B; 2016 Jul; 186(5):581-7. PubMed ID: 27003422 [TBL] [Abstract][Full Text] [Related]
37. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates. von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719 [TBL] [Abstract][Full Text] [Related]
38. Temperature adaptation and its impact on the shape of performance curves in Alruiz JM; Peralta-Maraver I; Bozinovic F; Santos M; Rezende EL Proc Biol Sci; 2023 May; 290(1998):20230507. PubMed ID: 37161321 [TBL] [Abstract][Full Text] [Related]
39. Warm and thermally variable incubation conditions reduce embryonic performance and carry over to influence hatchling tradeoffs. Stahlschmidt ZR J Therm Biol; 2024 Aug; 124():103946. PubMed ID: 39265502 [TBL] [Abstract][Full Text] [Related]
40. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon. Sparks MM; Westley PAH; Falke JA; Quinn TP Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]