These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 3136615)
1. Immunohistochemical study of the early human fetal brain. Sasaki A; Hirato J; Nakazato Y; Ishida Y Acta Neuropathol; 1988; 76(2):128-34. PubMed ID: 3136615 [TBL] [Abstract][Full Text] [Related]
2. Immunohistochemical characterization of primitive neuroectodermal tumors and their possible relationship to the stepwise ontogenetic development of the central nervous system. 1. Ontogenetic studies. Kleinert R Acta Neuropathol; 1991; 82(6):502-7. PubMed ID: 1723830 [TBL] [Abstract][Full Text] [Related]
3. The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. Stagaard M; Møllgård K Anat Embryol (Berl); 1989; 180(1):17-28. PubMed ID: 2476946 [TBL] [Abstract][Full Text] [Related]
4. Expression pattern of NeuN and GFAP during human fetal spinal cord development. Guo JH; Ma W; Yang JW; Gao Y; Liang Z; Liu J; Wang DY; Luo T; Cheng JR; Li LY Childs Nerv Syst; 2015 Jun; 31(6):863-72. PubMed ID: 25904356 [TBL] [Abstract][Full Text] [Related]
5. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system. Oudega M; Marani E J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147 [TBL] [Abstract][Full Text] [Related]
6. Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Szaro BG; Gainer H Brain Res; 1988 Oct; 471(2):207-24. PubMed ID: 2460198 [TBL] [Abstract][Full Text] [Related]
7. Structural proteins during brain development in the preterm and near-term ovine fetus and the effect of intermittent umbilical cord occlusion. Rocha E; Totten S; Hammond R; Han V; Richardson B Am J Obstet Gynecol; 2004 Aug; 191(2):497-506. PubMed ID: 15343227 [TBL] [Abstract][Full Text] [Related]
8. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. Dráberová E; Del Valle L; Gordon J; Marková V; Smejkalová B; Bertrand L; de Chadarévian JP; Agamanolis DP; Legido A; Khalili K; Dráber P; Katsetos CD J Neuropathol Exp Neurol; 2008 Apr; 67(4):341-54. PubMed ID: 18379434 [TBL] [Abstract][Full Text] [Related]
9. [The immunohistological study of developing human spinal cord--the localization of vimentine, GFAP in radial glial cell]. Kamada H; Kawai Y; Sato S; Fujiwara H; Ara S; Ogasawara T; Hotta T; Nakamura J; Saruta T; Suematsu K No To Shinkei; 1984 Mar; 36(3):229-35. PubMed ID: 6743394 [TBL] [Abstract][Full Text] [Related]
10. Glial and neuronal differentiation in the human fetal brain 9-23 weeks of gestation. Wilkinson M; Hume R; Strange R; Bell JE Neuropathol Appl Neurobiol; 1990 Jun; 16(3):193-204. PubMed ID: 2402329 [TBL] [Abstract][Full Text] [Related]
11. Regional differentiation of the human fetal ependyma: immunocytochemical markers. Sarnat HB J Neuropathol Exp Neurol; 1992 Jan; 51(1):58-75. PubMed ID: 1371311 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemical distribution of glial fibrillary acidic protein, neurofilament polypeptides and neuronal specific enolase in the human cerebellum. Pelc S; Fondu P; Gompel C J Neurol Sci; 1986 May; 73(3):289-97. PubMed ID: 3088213 [TBL] [Abstract][Full Text] [Related]
13. Immunohistochemistry of neuron-specific and glia-specific proteins. Iwanaga T; Takahashi Y; Fujita T Arch Histol Cytol; 1989; 52 Suppl():13-24. PubMed ID: 2510778 [TBL] [Abstract][Full Text] [Related]
14. An immunohistochemical study of the fetal sheep neocortex and cerebellum with antibodies against nervous system-specific proteins. Hewicker-Trautwein M; Trautwein G J Comp Pathol; 1993 Nov; 109(4):409-21. PubMed ID: 8106670 [TBL] [Abstract][Full Text] [Related]
15. Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord. Lukás Z; Dráber P; Bucek J; Dráberová E; Viklický V; Stasková Z Histochem J; 1989 Dec; 21(12):693-701. PubMed ID: 2482269 [TBL] [Abstract][Full Text] [Related]
16. Correlation of diffusion tensor imaging with histology in the developing human frontal cerebrum. Trivedi R; Husain N; Rathore RK; Saksena S; Srivastava S; Malik GK; Das V; Pradhan M; Pandey CM; Gupta RK Dev Neurosci; 2009; 31(6):487-96. PubMed ID: 19622880 [TBL] [Abstract][Full Text] [Related]
17. An immunohistochemical study of the enteric neural plexi in Hirschsprung's disease. MacKenzie JM; Dixon MF Histopathology; 1987 Oct; 11(10):1055-66. PubMed ID: 3141257 [TBL] [Abstract][Full Text] [Related]
19. Developmental distribution of coxsackie virus and adenovirus receptor localized in the nervous system. Hotta Y; Honda T; Naito M; Kuwano R Brain Res Dev Brain Res; 2003 Jun; 143(1):1-13. PubMed ID: 12763576 [TBL] [Abstract][Full Text] [Related]
20. Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. Lukás Z; Dráber P; Bucek J; Dráberová E; Viklický V; Dolezel S Histochemistry; 1993 Dec; 100(6):495-502. PubMed ID: 8163392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]