These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31366632)

  • 41. Positional firing properties of postrhinal cortex neurons.
    Burwell RD; Hafeman DM
    Neuroscience; 2003; 119(2):577-88. PubMed ID: 12770570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perceptual learning and top-down influences in primary visual cortex.
    Li W; Piëch V; Gilbert CD
    Nat Neurosci; 2004 Jun; 7(6):651-7. PubMed ID: 15156149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Timing of Reward-Seeking Action Tracks Visually Cued Theta Oscillations in Primary Visual Cortex.
    Levy JM; Zold CL; Namboodiri VMK; Hussain Shuler MG
    J Neurosci; 2017 Oct; 37(43):10408-10420. PubMed ID: 28947572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys.
    Martinez-Conde S; Macknik SL; Hubel DH
    Nat Neurosci; 2000 Mar; 3(3):251-8. PubMed ID: 10700257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial range and laminar structures of neuronal correlations in the cat primary visual cortex.
    Tanaka H; Tamura H; Ohzawa I
    J Neurophysiol; 2014 Aug; 112(3):705-18. PubMed ID: 25252337
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinct Frequency Specialization for Detecting Dark Transients in Humans and Tree Shrews.
    Khani A; Mustafar F; Rainer G
    Cell Rep; 2018 May; 23(8):2405-2415. PubMed ID: 29791851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot.
    Matsumoto M; Komatsu H
    J Neurophysiol; 2005 May; 93(5):2374-87. PubMed ID: 15634711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Five key factors determining pairwise correlations in visual cortex.
    Schulz DP; Sahani M; Carandini M
    J Neurophysiol; 2015 Aug; 114(2):1022-33. PubMed ID: 26019310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity of primate V1 cortical neurons during blinks.
    Gawne TJ; Martin JM
    J Neurophysiol; 2000 Nov; 84(5):2691-4. PubMed ID: 11068010
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.
    Sellers KK; Bennett DV; Fröhlich F
    Brain Res; 2015 Feb; 1598():31-45. PubMed ID: 25498982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Information in the neuronal representation of individual stimuli in the primate temporal visual cortex.
    Rolls ET; Treves A; Tovee MJ; Panzeri S
    J Comput Neurosci; 1997 Nov; 4(4):309-33. PubMed ID: 9427118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Latency shortening with enhanced sparseness and responsiveness in V1 during active visual sensing.
    Ito J; Joana C; Yamane Y; Fujita I; Tamura H; Maldonado PE; Grün S
    Sci Rep; 2022 Apr; 12(1):6021. PubMed ID: 35410997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlations, feature-binding and population coding in primary visual cortex.
    Golledge HD; Panzeri S; Zheng F; Pola G; Scannell JW; Giannikopoulos DV; Mason RJ; Tovée MJ; Young MP
    Neuroreport; 2003 May; 14(7):1045-50. PubMed ID: 12802200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The topographical arrangement of cutoff spatial frequencies across lower and upper visual fields in mouse V1.
    Zhang X; An X; Liu H; Peng J; Cai S; Wang W; Lin DT; Yang Y
    Sci Rep; 2015 Jan; 5():7734. PubMed ID: 25583266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The response dynamics of primate visual cortical neurons to simulated optical blur.
    Risner ML; Gawne TJ
    Vis Neurosci; 2009; 26(4):411-20. PubMed ID: 19706205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct Waking States for Strong Evoked Responses in Primary Visual Cortex and Optimal Visual Detection Performance.
    Neske GT; Nestvogel D; Steffan PJ; McCormick DA
    J Neurosci; 2019 Dec; 39(50):10044-10059. PubMed ID: 31672787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal and perceptual differences in the temporal processing of darks and lights.
    Komban SJ; Kremkow J; Jin J; Wang Y; Lashgari R; Li X; Zaidi Q; Alonso JM
    Neuron; 2014 Apr; 82(1):224-34. PubMed ID: 24698277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex.
    Fox K; Daw N; Sato H; Czepita D
    J Neurosci; 1992 Jul; 12(7):2672-84. PubMed ID: 1351937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Macaque V2 neurons, but not V1 neurons, show choice-related activity.
    Nienborg H; Cumming BG
    J Neurosci; 2006 Sep; 26(37):9567-78. PubMed ID: 16971541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.