BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 31366997)

  • 1. Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI.
    Cho HR; Kumari N; Thi Vu H; Kim H; Park CK; Choi SH
    Sci Rep; 2019 Jul; 9(1):11085. PubMed ID: 31366997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SDF-1 Blockade Enhances Anti-VEGF Therapy of Glioblastoma and Can Be Monitored by MRI.
    Deng L; Stafford JH; Liu SC; Chernikova SB; Merchant M; Recht L; Martin Brown J
    Neoplasia; 2017 Jan; 19(1):1-7. PubMed ID: 27940247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
    Castro BA; Flanigan P; Jahangiri A; Hoffman D; Chen W; Kuang R; De Lay M; Yagnik G; Wagner JR; Mascharak S; Sidorov M; Shrivastav S; Kohanbash G; Okada H; Aghi MK
    Oncogene; 2017 Jun; 36(26):3749-3759. PubMed ID: 28218903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
    Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY
    Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy.
    Kwiatkowski SC; Guerrero PA; Hirota S; Chen Z; Morales JE; Aghi M; McCarty JH
    PLoS One; 2017; 12(9):e0185065. PubMed ID: 28938007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspirin Affects Tumor Angiogenesis and Sensitizes Human Glioblastoma Endothelial Cells to Temozolomide, Bevacizumab, and Sunitinib, Impairing Vascular Endothelial Growth Factor-Related Signaling.
    Navone SE; Guarnaccia L; Cordiglieri C; Crisà FM; Caroli M; Locatelli M; Schisano L; Rampini P; Miozzo M; La Verde N; Riboni L; Campanella R; Marfia G
    World Neurosurg; 2018 Dec; 120():e380-e391. PubMed ID: 30144594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance.
    Chandra A; Jahangiri A; Chen W; Nguyen AT; Yagnik G; Pereira MP; Jain S; Garcia JH; Shah SS; Wadhwa H; Joshi RS; Weiss J; Wolf KJ; Lin JG; Müller S; Rick JW; Diaz AA; Gilbert LA; Kumar S; Aghi MK
    Cancer Res; 2020 Apr; 80(7):1498-1511. PubMed ID: 32041837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy.
    Guo J; Shinriki S; Su Y; Nakamura T; Hayashi M; Tsuda Y; Murakami Y; Tasaki M; Hide T; Takezaki T; Kuratsu J; Yamashita S; Ueda M; Li JD; Ando Y; Jono H
    Oncotarget; 2014 Aug; 5(15):6353-64. PubMed ID: 25071012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models.
    Piao Y; Park SY; Henry V; Smith BD; Tiao N; Flynn DL; de Groot JF
    Neuro Oncol; 2016 Sep; 18(9):1230-41. PubMed ID: 26965451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma.
    Scholz A; Harter PN; Cremer S; Yalcin BH; Gurnik S; Yamaji M; Di Tacchio M; Sommer K; Baumgarten P; Bähr O; Steinbach JP; Trojan J; Glas M; Herrlinger U; Krex D; Meinhardt M; Weyerbrock A; Timmer M; Goldbrunner R; Deckert M; Braun C; Schittenhelm J; Frueh JT; Ullrich E; Mittelbronn M; Plate KH; Reiss Y
    EMBO Mol Med; 2016 Jan; 8(1):39-57. PubMed ID: 26666269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: insights from protein expression profiling and MRI.
    Zhang J; Xue W; Xu K; Yi L; Guo Y; Xie T; Tong H; Zhou B; Wang S; Li Q; Liu H; Chen X; Fang J; Zhang W
    Theranostics; 2020; 10(16):7245-7259. PubMed ID: 32641990
    [No Abstract]   [Full Text] [Related]  

  • 12. Silencing BMAL1 promotes M1/M2 polarization through the LDHA/lactate axis to promote GBM sensitivity to bevacizumab.
    Wang F; Liao W; Li C; Zhu L
    Int Immunopharmacol; 2024 Jun; 134():112187. PubMed ID: 38733825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging--pilot study.
    Sawlani RN; Raizer J; Horowitz SW; Shin W; Grimm SA; Chandler JP; Levy R; Getch C; Carroll TJ
    Radiology; 2010 May; 255(2):622-8. PubMed ID: 20413772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of serial changes in cerebral blood volume and metabolism in patients with recurrent glioblastoma undergoing antiangiogenic therapy.
    Stadlbauer A; Pichler P; Karl M; Brandner S; Lerch C; Renner B; Heinz G
    Eur J Radiol; 2015 Jun; 84(6):1128-36. PubMed ID: 25795194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma.
    Simon T; Pinioti S; Schellenberger P; Rajeeve V; Wendler F; Cutillas PR; King A; Stebbing J; Giamas G
    Mol Cancer; 2018 Aug; 17(1):132. PubMed ID: 30165850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging.
    Cho HR; Hong B; Kim H; Park CK; Park SH; Park S; Choi SH
    Oncotarget; 2016 Oct; 7(43):69606-69615. PubMed ID: 27626306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles.
    Sousa F; Dhaliwal HK; Gattacceca F; Sarmento B; Amiji MM
    J Control Release; 2019 Sep; 309():37-47. PubMed ID: 31344424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CXCR2-Expressing Tumor Cells Drive Vascular Mimicry in Antiangiogenic Therapy-Resistant Glioblastoma.
    Angara K; Borin TF; Rashid MH; Lebedyeva I; Ara R; Lin PC; Iskander A; Bollag RJ; Achyut BR; Arbab AS
    Neoplasia; 2018 Oct; 20(10):1070-1082. PubMed ID: 30236892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation.
    Rong X; Huang B; Qiu S; Li X; He L; Peng Y
    Oncotarget; 2016 Dec; 7(51):83976-83986. PubMed ID: 27824617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms.
    Miletic H; Niclou SP; Johansson M; Bjerkvig R
    Expert Opin Ther Targets; 2009 Apr; 13(4):455-68. PubMed ID: 19335067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.