These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31367298)

  • 1. Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies.
    Ma Z; Shi W; Yan K; Pan L; Yu G
    Chem Sci; 2019 Jul; 10(25):6232-6244. PubMed ID: 31367298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring.
    Guo X; Sun Y; Sun X; Li J; Wu J; Shi Y; Pan L
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300246. PubMed ID: 37534567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors.
    Cao J; Wu B; Yuan P; Liu Y; Hu C
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Conductive Hydrogel Used in Flexible Strain Sensor.
    Tang L; Wu S; Qu J; Gong L; Tang J
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Bionic Skin Based on Conductive Polymer Gels.
    Li H; Gao G; Xu Z; Tang D; Chen T
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100480. PubMed ID: 34505726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors.
    Li L; Meng J; Zhang M; Liu T; Zhang C
    Chem Commun (Camb); 2021 Dec; 58(2):185-207. PubMed ID: 34881748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive polymer based hydrogels and their application in wearable sensors: a review.
    Liu D; Huyan C; Wang Z; Guo Z; Zhang X; Torun H; Mulvihill D; Xu BB; Chen F
    Mater Horiz; 2023 Jul; 10(8):2800-2823. PubMed ID: 37204005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.
    Liu YJ; Cao WT; Ma MG; Wan P
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25559-25570. PubMed ID: 28696658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices.
    Lv TR; Zhang WH; Yang YQ; Zhang JC; Yin MJ; Yin Z; Yong KT; An QF
    Small; 2023 Jul; 19(30):e2301071. PubMed ID: 37069773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications.
    Tran VV; Lee S; Lee D; Le TH
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors.
    Li G; Li C; Li G; Yu D; Song Z; Wang H; Liu X; Liu H; Liu W
    Small; 2022 Feb; 18(5):e2101518. PubMed ID: 34658130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives.
    Liu K; Wei S; Song L; Liu H; Wang T
    J Agric Food Chem; 2020 Jul; 68(28):7269-7280. PubMed ID: 32574052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors.
    Yu J; Feng Y; Sun D; Ren W; Shao C; Sun R
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10886-10897. PubMed ID: 35179371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards conductive hydrogels in e-skins: a review on rational design and recent developments.
    Li C
    RSC Adv; 2021 Oct; 11(54):33835-33848. PubMed ID: 35497297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.