BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31367684)

  • 21. Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane.
    Sokolov VS; Tashkin VY; Zykova DD; Kharitonova YV; Galimzyanov TR; Batishchev OV
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protons @ interfaces: implications for biological energy conversion.
    Mulkidjanian AY; Heberle J; Cherepanov DA
    Biochim Biophys Acta; 2006 Aug; 1757(8):913-30. PubMed ID: 16624250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for DeltapH surface component (DeltapH(S)) of proton motive force in ATP synthesis of mitochondria.
    Xiong JW; Zhu L; Jiao X; Liu SS
    Biochim Biophys Acta; 2010 Mar; 1800(3):213-22. PubMed ID: 19695309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C
    Lyu H; Lazár D
    J Theor Biol; 2017 Jan; 413():11-23. PubMed ID: 27816676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
    Shikanai T; Yamamoto H
    Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria.
    Brown GC; Brand MD
    Biochem J; 1986 Feb; 234(1):75-81. PubMed ID: 3010957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes.
    Cherepanov DA; Feniouk BA; Junge W; Mulkidjanian AY
    Biophys J; 2003 Aug; 85(2):1307-16. PubMed ID: 12885673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A coulombic hypothesis of mitochondrial oxidative phosphorylation.
    Malpress FH
    J Theor Biol; 1984 Aug; 109(4):501-21. PubMed ID: 6090815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of generation of local ΔpH in mitochondria and bacteria.
    Medvedev ES; Stuchebrukhov AA
    Biochemistry (Mosc); 2014 May; 79(5):425-34. PubMed ID: 24954593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
    Ehrenfeld J; Garcia-Romeu F; Harvey BJ
    J Physiol; 1985 Feb; 359():331-55. PubMed ID: 2582114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction.
    Wainio WW
    Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane proton-motive potential of Spiroplasma floricola.
    Schummer U; Schiefer HG
    FEBS Lett; 1987 Nov; 224(1):79-82. PubMed ID: 2890538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 1. A theory of the ionic control of a complex multi-enzyme system.
    Ricard J; Noat G
    Eur J Biochem; 1986 Feb; 155(1):183-90. PubMed ID: 3948877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energization-induced redistribution of charge carriers near membranes.
    Kamp F; Chen YD; Westerhoff HV
    Biophys Chem; 1988 Jun; 30(2):113-32. PubMed ID: 2843244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri.
    Blaut M; Gottschalk G
    Eur J Biochem; 1984 May; 141(1):217-22. PubMed ID: 6327309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further characteristics of the ATP-stimulated uptake of calcium into chromaffin granules.
    Burger A; Niedermaier W; Langer R; Bode U
    J Neurochem; 1984 Sep; 43(3):806-15. PubMed ID: 6235324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton pump-driven cutaneous chloride uptake in anuran amphibia.
    Jensen LJ; Willumsen NJ; Amstrup J; Larsen EH
    Biochim Biophys Acta; 2003 Dec; 1618(2):120-32. PubMed ID: 14729149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton migration along the membrane surface and retarded surface to bulk transfer.
    Heberle J; Riesle J; Thiedemann G; Oesterhelt D; Dencher NA
    Nature; 1994 Aug; 370(6488):379-82. PubMed ID: 8047144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.