BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31368115)

  • 1. Lipidomic Analysis of Clostridium cadaveris and Clostridium fallax.
    Guan Z; Garrett TA; Goldfine H
    Lipids; 2019 Aug; 54(8):423-431. PubMed ID: 31368115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid diversity among botulinum neurotoxin-producing clostridia.
    Guan Z; Johnston NC; Raetz CRH; Johnson EA; Goldfine H
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2577-2584. PubMed ID: 22837302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens.
    Guan Z; Johnston NC; Aygun-Sunar S; Daldal F; Raetz CR; Goldfine H
    Biochim Biophys Acta; 2011 Mar; 1811(3):186-93. PubMed ID: 21195206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile.
    Guan Z; Tian B; Perfumo A; Goldfine H
    Biochim Biophys Acta; 2013 Jun; 1831(6):1108-12. PubMed ID: 23454375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid diversity in clostridia.
    Guan Z; Goldfine H
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Sep; 1866(9):158966. PubMed ID: 33974975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid composition in the classification of the butyric acid-producing clostridia.
    Johnston NC; Goldfine H
    J Gen Microbiol; 1983 Apr; 129(4):1075-81. PubMed ID: 6886674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium difficile contains plasmalogen species of phospholipids and glycolipids.
    Guan Z; Katzianer D; Zhu J; Goldfine H
    Biochim Biophys Acta; 2014 Oct; 1842(10):1353-9. PubMed ID: 24983203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular lipids of Romboutsia.
    Guan Z; Chen L; Gerritsen J; Smidt H; Goldfine H
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt A):1076-1082. PubMed ID: 27317428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition.
    Khuller GK; Goldfine H
    J Lipid Res; 1974 Sep; 15(5):500-7. PubMed ID: 4415053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of phospholipids in Clostridium butyricum: kinetics of synthesis of plasmalogens and the glycerol acetal of ethanolamine plasmalogen.
    Koga Y; Goldfine H
    J Bacteriol; 1984 Aug; 159(2):597-604. PubMed ID: 6746573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani.
    Johnston NC; Aygun-Sunar S; Guan Z; Ribeiro AA; Daldal F; Raetz CR; Goldfine H
    J Lipid Res; 2010 Jul; 51(7):1953-61. PubMed ID: 20173213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylglycerol acetal of plasmenylethanolamine as an intermediate in ether lipid formation in Clostridium butyricum.
    MacDonald DL; Goldfine H
    Biochem Cell Biol; 1990 Jan; 68(1):225-30. PubMed ID: 2350489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of acyl and alk-1-enyl groups in Clostridium butyricum phospholipids by exogenous fatty acids.
    Khuller GK; Goldfine H
    Biochemistry; 1975 Aug; 14(16):3642-7. PubMed ID: 1164501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid aliphatic chain composition modulates lipid class composition, but not lipid asymmetry in Clostridium butyricum.
    Johnston NC; Goldfine H
    Biochim Biophys Acta; 1985 Feb; 813(1):10-8. PubMed ID: 3970912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of the aliphatic chains of Clostridium acetobutylicum by exogenous fatty acids: regulation of phospholipid and glycolipid composition.
    Johnston NC; Goldfine H
    J Bacteriol; 1992 Mar; 174(6):1848-53. PubMed ID: 1548233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel polar lipid composition of Clostridium innocuum as the basis for an assessment of its taxonomic status.
    Johnston NC; Goldfine H; Fischer W
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():105-11. PubMed ID: 8162181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diradylglycerol formation in cholecystokinin-stimulated rabbit pancreatic acini. Assessment of precursor phospholipids by means of molecular species analysis.
    Hermans SW; Engelmann B; Reinhardt U; Bartholomeus-Van Nooij IG; De Pont JJ; Willems PH
    Eur J Biochem; 1996 Jan; 235(1-2):73-81. PubMed ID: 8631369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of new phosphatidylglycerol acetals of plasmalogens. A family of ether lipids in clostridia.
    Johnston NC; Goldfine H
    Eur J Biochem; 1994 Aug; 223(3):957-63. PubMed ID: 8055972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deuterium nuclear magnetic resonance studies on the plasmalogens and the glycerol acetals of plasmalogens of Clostridium butyricum and Clostridium beijerinckii.
    Malthaner M; Seelig J; Johnston NC; Goldfine H
    Biochemistry; 1987 Sep; 26(18):5826-33. PubMed ID: 3676294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids.
    Johnston NC; Goldfine H
    J Bacteriol; 1982 Feb; 149(2):567-75. PubMed ID: 7056696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.