These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3136812)

  • 1. An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase.
    Clarke PH; Drew R
    Biosci Rep; 1988 Apr; 8(2):103-20. PubMed ID: 3136812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product.
    Wilson S; Drew R
    J Bacteriol; 1991 Aug; 173(16):4914-21. PubMed ID: 1907262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence of the aliphatic amidase regulator gene (amiR) of Pseudomonas aeruginosa.
    Lowe N; Rice PM; Drew RE
    FEBS Lett; 1989 Mar; 246(1-2):39-43. PubMed ID: 2495988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amidase regulatory gene (amiR) of Pseudomonas aeruginosa.
    Cousens DJ; Clarke PH; Drew R
    J Gen Microbiol; 1987 Aug; 133(8):2041-52. PubMed ID: 3127537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and primary structure of the wide-spectrum amidase from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa.
    Soubrier F; Lévy-Schil S; Mayaux JF; Pétré D; Arnaud A; Crouzet J
    Gene; 1992 Jul; 116(1):99-104. PubMed ID: 1628849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive control of Pseudomonas aeruginosa amidase synthesis is mediated by a transcription anti-termination mechanism.
    Drew R; Lowe N
    J Gen Microbiol; 1989 Apr; 135(4):817-23. PubMed ID: 2513374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein.
    Wilson SA; Wachira SJ; Drew RE; Jones D; Pearl LH
    EMBO J; 1993 Sep; 12(9):3637-42. PubMed ID: 8253087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide.
    Brown JE; Clarke PH
    J Gen Microbiol; 1970 Dec; 64(3):329-42. PubMed ID: 4995910
    [No Abstract]   [Full Text] [Related]  

  • 9. Positive regulation of amidase synthesis in Pseudomonas aeruginosa.
    Farin F; Clarke PH
    J Bacteriol; 1978 Aug; 135(2):379-92. PubMed ID: 98516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution in action.
    Betz JL; Brown PR; Smyth MJ; Clarke PH
    Nature; 1974 Feb; 247(5439):261-4. PubMed ID: 4206474
    [No Abstract]   [Full Text] [Related]  

  • 11. Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa.
    Drew R
    J Gen Microbiol; 1984 Dec; 130(12):3101-11. PubMed ID: 6440948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of amidase formation in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity.
    Janssen DB; Herst PM; Joosten HM; van der Drift C
    Arch Microbiol; 1982 Jun; 131(4):344-6. PubMed ID: 6126169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa.
    Paterson A; Clarke PH
    J Gen Microbiol; 1979 Sep; 114(1):75-85. PubMed ID: 118234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic versatility of pseudomonads.
    Clarke PH
    Antonie Van Leeuwenhoek; 1982 May; 48(2):105-30. PubMed ID: 6808915
    [No Abstract]   [Full Text] [Related]  

  • 16. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase.
    Clarke PH; Drew RE; Turberville C; Brammar WJ; Ambler RP; Auffret AD
    Biosci Rep; 1981 Apr; 1(4):299-307. PubMed ID: 6271281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa.
    Betz JL; Clarke PH
    J Gen Microbiol; 1972 Nov; 73(1):161-74. PubMed ID: 4631783
    [No Abstract]   [Full Text] [Related]  

  • 20. Growth of pseudomonas species on phenylacetamide.
    Betz JL; Clarke PH
    J Gen Microbiol; 1973 Mar; 75(1):167-77. PubMed ID: 4198640
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.