BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3136812)

  • 1. An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase.
    Clarke PH; Drew R
    Biosci Rep; 1988 Apr; 8(2):103-20. PubMed ID: 3136812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product.
    Wilson S; Drew R
    J Bacteriol; 1991 Aug; 173(16):4914-21. PubMed ID: 1907262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence of the aliphatic amidase regulator gene (amiR) of Pseudomonas aeruginosa.
    Lowe N; Rice PM; Drew RE
    FEBS Lett; 1989 Mar; 246(1-2):39-43. PubMed ID: 2495988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amidase regulatory gene (amiR) of Pseudomonas aeruginosa.
    Cousens DJ; Clarke PH; Drew R
    J Gen Microbiol; 1987 Aug; 133(8):2041-52. PubMed ID: 3127537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and primary structure of the wide-spectrum amidase from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa.
    Soubrier F; Lévy-Schil S; Mayaux JF; Pétré D; Arnaud A; Crouzet J
    Gene; 1992 Jul; 116(1):99-104. PubMed ID: 1628849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive control of Pseudomonas aeruginosa amidase synthesis is mediated by a transcription anti-termination mechanism.
    Drew R; Lowe N
    J Gen Microbiol; 1989 Apr; 135(4):817-23. PubMed ID: 2513374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein.
    Wilson SA; Wachira SJ; Drew RE; Jones D; Pearl LH
    EMBO J; 1993 Sep; 12(9):3637-42. PubMed ID: 8253087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide.
    Brown JE; Clarke PH
    J Gen Microbiol; 1970 Dec; 64(3):329-42. PubMed ID: 4995910
    [No Abstract]   [Full Text] [Related]  

  • 9. Positive regulation of amidase synthesis in Pseudomonas aeruginosa.
    Farin F; Clarke PH
    J Bacteriol; 1978 Aug; 135(2):379-92. PubMed ID: 98516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution in action.
    Betz JL; Brown PR; Smyth MJ; Clarke PH
    Nature; 1974 Feb; 247(5439):261-4. PubMed ID: 4206474
    [No Abstract]   [Full Text] [Related]  

  • 11. Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa.
    Drew R
    J Gen Microbiol; 1984 Dec; 130(12):3101-11. PubMed ID: 6440948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of amidase formation in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity.
    Janssen DB; Herst PM; Joosten HM; van der Drift C
    Arch Microbiol; 1982 Jun; 131(4):344-6. PubMed ID: 6126169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa.
    Paterson A; Clarke PH
    J Gen Microbiol; 1979 Sep; 114(1):75-85. PubMed ID: 118234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic versatility of pseudomonads.
    Clarke PH
    Antonie Van Leeuwenhoek; 1982 May; 48(2):105-30. PubMed ID: 6808915
    [No Abstract]   [Full Text] [Related]  

  • 16. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase.
    Clarke PH; Drew RE; Turberville C; Brammar WJ; Ambler RP; Auffret AD
    Biosci Rep; 1981 Apr; 1(4):299-307. PubMed ID: 6271281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa.
    Betz JL; Clarke PH
    J Gen Microbiol; 1972 Nov; 73(1):161-74. PubMed ID: 4631783
    [No Abstract]   [Full Text] [Related]  

  • 20. Growth of pseudomonas species on phenylacetamide.
    Betz JL; Clarke PH
    J Gen Microbiol; 1973 Mar; 75(1):167-77. PubMed ID: 4198640
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.