These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31368199)

  • 21. Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes.
    Shi R; Zhang Z; Hu X
    Acc Chem Res; 2019 May; 52(5):1471-1483. PubMed ID: 31008581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation.
    Leng Y; Du S; Feng G; Sang X; Jiang P; Li H; Wang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):474-483. PubMed ID: 31802662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic Investigations of Ruthenium Catalyzed Dehydrogenative Thioester Synthesis and Thioester Hydrogenation.
    Rauch M; Luo J; Avram L; Ben-David Y; Milstein D
    ACS Catal; 2021 Mar; 11(5):2795-2807. PubMed ID: 33763290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer hydrogenation of aldehydes and ketones catalyzed using an aminophosphinite POCN
    Segizbayev M; Öztopçu Ö; Hayrapetyan D; Shakhman D; Lyssenko KA; Khalimon AY
    Dalton Trans; 2020 Sep; 49(34):11950-11957. PubMed ID: 32812594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium PNN(O) Complexes: Cooperative Reactivity and Application as Catalysts for Acceptorless Dehydrogenative Coupling Reactions.
    de Boer SY; Korstanje TJ; La Rooij SR; Kox R; Reek JNH; van der Vlugt JI
    Organometallics; 2017 Apr; 36(8):1541-1549. PubMed ID: 29353952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecularly Defined Manganese Pincer Complexes for Selective Transfer Hydrogenation of Ketones.
    Perez M; Elangovan S; Spannenberg A; Junge K; Beller M
    ChemSusChem; 2017 Jan; 10(1):83-86. PubMed ID: 27791342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism investigation of ketone hydrogenation catalyzed by ruthenium bifunctional catalysts: insights from a DFT study.
    Zhang X; Guo X; Chen Y; Tang Y; Lei M; Fang W
    Phys Chem Chem Phys; 2012 May; 14(17):6003-12. PubMed ID: 22441438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.
    Pritchard J; Filonenko GA; van Putten R; Hensen EJ; Pidko EA
    Chem Soc Rev; 2015 Jun; 44(11):3808-33. PubMed ID: 25941799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridium-catalyzed acceptorless dehydrogenative alkylation.
    Hille T; Irrgang T; Kempe R
    Chemistry; 2014 May; 20(19):5569-72. PubMed ID: 24711248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes.
    Chang W; Gong X; Wang S; Xiao LP; Song G
    Org Biomol Chem; 2017 Apr; 15(16):3466-3471. PubMed ID: 28368057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diruthenium(ii)-NNN pincer complex catalysts for transfer hydrogenation of ketones.
    Chai H; Wang Q; Liu T; Yu Z
    Dalton Trans; 2016 Nov; 45(44):17843-17849. PubMed ID: 27774562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles.
    Chakraborty S; Brennessel WW; Jones WD
    J Am Chem Soc; 2014 Jun; 136(24):8564-7. PubMed ID: 24877556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of the Manganese-Pincer-Catalyzed Acceptorless Dehydrogenative Coupling of Nitriles and Alcohols.
    Luque-Urrutia JA; Solà M; Milstein D; Poater A
    J Am Chem Soc; 2019 Feb; 141(6):2398-2403. PubMed ID: 30632367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manganese-Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines.
    Deibl N; Kempe R
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1663-1666. PubMed ID: 28078735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the Effect of Aromatic Groups in Mn(I)NNN Pincer Complexes on Carbon Dioxide Activation Using Density Functional Study.
    Parmar SV; Avasare V; Pal S
    Front Chem; 2021; 9():778718. PubMed ID: 34869226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Active Supported Pt Nanocatalysts Synthesized by Alcohol Reduction towards Hydrogenation of Cinnamaldehyde: Synergy of Metal Valence and Hydroxyl Groups.
    Wang Y; He W; Wang L; Yang J; Xiang X; Zhang B; Li F
    Chem Asian J; 2015 Jul; 10(7):1561-70. PubMed ID: 25882904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ruthenium-Catalyzed Dehydrogenative Functionalization of Alcohols to Pyrroles: A Comparison between Metal-Ligand Cooperative and Non-cooperative Approaches.
    Guin AK; Mondal R; Chakraborty G; Pal S; Paul ND
    J Org Chem; 2022 Jun; 87(11):7106-7123. PubMed ID: 35583483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.