BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 31368685)

  • 1. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.
    Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition.
    Pan SH; Nachimuthu S; Hwang BJ; Brunklaus G; Jiang JC
    J Colloid Interface Sci; 2023 Nov; 649():804-814. PubMed ID: 37390528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal.
    Kamphaus EP; Gomez SA; Qin X; Shao M; Balbuena PB
    Chemphyschem; 2020 Jun; 21(12):1310-1317. PubMed ID: 32364643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction.
    Lochala J; Taverne T; Wu B; Benamara M; Cai M; Xiao X; Xiao J
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44204-44213. PubMed ID: 31692322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li-S Batteries.
    Wang Y; Lin CF; Rao J; Gaskell K; Rubloff G; Lee SB
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24554-24563. PubMed ID: 29956907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt.
    Tang K; Du A; Dong S; Cui Z; Liu X; Lu C; Zhao J; Zhou X; Cui G
    Adv Mater; 2020 Feb; 32(6):e1904987. PubMed ID: 31850607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Simulations of the Microstructure Evolution of Solid Electrolyte Interphase during Cyclic Charging/Discharging.
    Yang PY; Pao CW
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5017-5027. PubMed ID: 33467849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing Li
    Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential decomposition of the major anion in a dual-salt electrolyte facilitates the formation of organic-inorganic composite solid electrolyte interphase.
    Qi F; Yu P; Zhou Q; Liu Y; Sun Q; Ma B; Ren X; Cheng T
    J Chem Phys; 2023 Mar; 158(10):104704. PubMed ID: 36922150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes.
    Yan C; Li HR; Chen X; Zhang XQ; Cheng XB; Xu R; Huang JQ; Zhang Q
    J Am Chem Soc; 2019 Jun; 141(23):9422-9429. PubMed ID: 31117672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy.
    Xu Y; Wu H; He Y; Chen Q; Zhang JG; Xu W; Wang C
    Nano Lett; 2020 Jan; 20(1):418-425. PubMed ID: 31816244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes.
    Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase.
    Wan G; Guo F; Li H; Cao Y; Ai X; Qian J; Li Y; Yang H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):593-601. PubMed ID: 29243904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of inorganic layers on polysulfide decomposition at sodium-metal anode surfaces for room temperature Na/S batteries.
    Singsen S; Ospina-Acevedo F; Suthirakun S; Hirunsit P; Balbuena PB
    Phys Chem Chem Phys; 2023 Oct; 25(38):26316-26326. PubMed ID: 37747693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.