These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31368702)

  • 1. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space.
    Graf D; Beuerle M; Ochsenfeld C
    J Chem Theory Comput; 2019 Aug; 15(8):4468-4477. PubMed ID: 31368702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A range-separated generalized Kohn-Sham method including a long-range nonlocal random phase approximation correlation potential.
    Graf D; Ochsenfeld C
    J Chem Phys; 2020 Dec; 153(24):244118. PubMed ID: 33380112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.
    Graf D; Beuerle M; Schurkus HF; Luenser A; Savasci G; Ochsenfeld C
    J Chem Theory Comput; 2018 May; 14(5):2505-2515. PubMed ID: 29658715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.
    Seijo L; Barandiarán Z
    J Chem Phys; 2004 Oct; 121(14):6698-709. PubMed ID: 15473725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism.
    Beuerle M; Graf D; Schurkus HF; Ochsenfeld C
    J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Optimized Effective Potential for Orbital Functionals and Self-Consistent Calculation of Random Phase Approximations.
    Jin Y; Zhang D; Chen Z; Su NQ; Yang W
    J Phys Chem Lett; 2017 Oct; 8(19):4746-4751. PubMed ID: 28895734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems.
    Yang Y; Dominguez A; Zhang D; Lutsker V; Niehaus TA; Frauenheim T; Yang W
    J Chem Phys; 2017 Mar; 146(12):124104. PubMed ID: 28388105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-scaling analytical gradients for the direct random phase approximation using an atomic orbital formalism.
    Beuerle M; Ochsenfeld C
    J Chem Phys; 2018 Dec; 149(24):244111. PubMed ID: 30599700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy.
    Spadetto E; Philipsen PHT; Förster A; Visscher L
    J Chem Theory Comput; 2023 Mar; 19(5):1499-1516. PubMed ID: 36787494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective sub-quadratic scaling atomic-orbital reformulation of the scaled opposite-spin RI-CC2 ground-state model using Cholesky-decomposed densities and an attenuated Coulomb metric.
    Sacchetta F; Graf D; Laqua H; Ambroise MA; Kussmann J; Dreuw A; Ochsenfeld C
    J Chem Phys; 2022 Sep; 157(10):104104. PubMed ID: 36109222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks.
    Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X
    J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories.
    Tretiak S; Isborn CM; Niklasson AM; Challacombe M
    J Chem Phys; 2009 Feb; 130(5):054111. PubMed ID: 19206962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separable resolution-of-the-identity with all-electron Gaussian bases: Application to cubic-scaling RPA.
    Duchemin I; Blase X
    J Chem Phys; 2019 May; 150(17):174120. PubMed ID: 31067912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchy of model Kohn-Sham potentials for orbital-dependent functionals: a practical alternative to the optimized effective potential method.
    Kohut SV; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2014 May; 140(18):18A535. PubMed ID: 24832343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.