These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31368969)

  • 41. Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.
    Wu TH; Kieu K; Peyghambarian N; Jones RJ
    Opt Express; 2011 Mar; 19(6):5313-8. PubMed ID: 21445169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pulse doublets generated by a frequency-shifting loop containing an electro-optic amplitude modulator.
    Yang H; Vallet M; Zhang H; Zhao C; Brunel M
    Opt Express; 2019 Jun; 27(13):18766-18775. PubMed ID: 31252813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides.
    Kowligy AS; Lind A; Hickstein DD; Carlson DR; Timmers H; Nader N; Cruz FC; Ycas G; Papp SB; Diddams SA
    Opt Lett; 2018 Apr; 43(8):1678-1681. PubMed ID: 29652338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators.
    Wang S; Fan X; Xu B; He Z
    Opt Lett; 2019 Jan; 44(1):65-68. PubMed ID: 30645549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Femtosecond-laser-based optical clockwork with instabilityDiddams SA; Hollberg L; Ma LS; Robertsson L
    Opt Lett; 2002 Jan; 27(1):58-60. PubMed ID: 18007715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-in-fiber SESAM based comb oscillator with an intra-cavity electro-optic modulator for coherent high bandwidth stabilization.
    Schweyer SM; Eder B; Putzer P; Mayerbacher M; Lemke N; Schreiber KU; Hugentobler U; Kienberger R
    Opt Express; 2018 Sep; 26(18):23798-23807. PubMed ID: 30184876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of frequency noise on a broadband infrared frequency comb using optical heterodyne techniques.
    Kim K; Nicholson JW; Yan M; Knight JC; Newbury NR; Diddams SA
    Opt Express; 2007 Dec; 15(26):17715-23. PubMed ID: 19551068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A phase-stabilized carbon nanotube fiber laser frequency comb.
    Lim J; Knabe K; Tillman KA; Neely W; Wang Y; Amezcua-Correa R; Couny F; Light PS; Benabid F; Knight JC; Corwin KL; Nicholson JW; Washburn BR
    Opt Express; 2009 Aug; 17(16):14115-20. PubMed ID: 19654821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.
    Supradeepa VR; Weiner AM
    Opt Lett; 2012 Aug; 37(15):3066-8. PubMed ID: 22859087
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser.
    Long DA; Fleisher AJ; Douglass KO; Maxwell SE; Bielska K; Hodges JT; Plusquellic DF
    Opt Lett; 2014 May; 39(9):2688-90. PubMed ID: 24784078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microresonator-based comb generation without an external laser source.
    Johnson AR; Okawachi Y; Lamont MR; Levy JS; Lipson M; Gaeta AL
    Opt Express; 2014 Jan; 22(2):1394-401. PubMed ID: 24515147
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circumvention of noise contributions in fiber laser based frequency combs.
    Benkler E; Telle H; Zach A; Tauser F
    Opt Express; 2005 Jul; 13(15):5662-8. PubMed ID: 19498566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual frequency comb spectroscopy with a single laser.
    Znakovskaya I; Fill E; Forget N; Tournois P; Seidel M; Pronin O; Krausz F; Apolonski A
    Opt Lett; 2014 Oct; 39(19):5471-4. PubMed ID: 25360905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tapered semiconductor amplifiers for optical frequency combs in the near infrared.
    Cruz FC; Stowe MC; Ye J
    Opt Lett; 2006 May; 31(9):1337-9. PubMed ID: 16642104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual electro-optic comb spectroscopy using a single pseudo-randomly driven modulator.
    Durán V; Escobar-Vera C; Soriano-Amat M; Martins HF; Martin-Lopez S; Gonzalez-Herraez M; Fernández-Ruiz MR
    Opt Express; 2022 Jul; 30(14):25103-25110. PubMed ID: 36237048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward free-running operation of dual-comb fiber lasers for methane sensing.
    Guay P; Tourigny-Plante A; Bourbeau Hébert N; Michaud-Belleau V; Larouche S; Fdil K; Genest J
    Appl Opt; 2020 Mar; 59(7):B35-B38. PubMed ID: 32225693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms.
    Wu R; Supradeepa VR; Long CM; Leaird DE; Weiner AM
    Opt Lett; 2010 Oct; 35(19):3234-6. PubMed ID: 20890344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly coherent, watt-level deep-UV radiation via a frequency-quadrupled Yb-fiber laser system.
    Burkley Z; Brandt AD; Rasor C; Cooper SF; Yost DC
    Appl Opt; 2019 Mar; 58(7):1657-1661. PubMed ID: 30874196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Offset-free mid-infrared frequency comb based on a mode-locked semiconductor laser.
    Rockmore R; Laurain A; Moloney JV; Jason Jones R
    Opt Lett; 2019 Apr; 44(7):1797-1800. PubMed ID: 30933150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.