These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31369168)

  • 1. Laser-based radiocarbon detection in the laboratory: How soon?
    Murnick DE
    J Labelled Comp Radiopharm; 2019 Sep; 62(11):768-775. PubMed ID: 31369168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.
    Murnick DE; Dogru O; Ilkmen E
    Anal Chem; 2008 Jul; 80(13):4820-4. PubMed ID: 18533685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human ADME for YH12852 using wavelength scanning cavity ring-down spectroscopy (WS-CRDS) after a low radioactivity dose.
    Kim A; Dueker SR; Dong F; Roffel AF; Lee SW; Lee H
    Bioanalysis; 2020 Jan; 12(2):87-98. PubMed ID: 31928227
    [No Abstract]   [Full Text] [Related]  

  • 4. Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies.
    Kratochwil NA; Dueker SR; Muri D; Senn C; Yoon H; Yu BY; Lee GH; Dong F; Otteneder MB
    PLoS One; 2018; 13(10):e0205435. PubMed ID: 30332475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C Analysis via Intracavity Optogalvanic Spectroscopy.
    Murnick D; Dogru O; Ilkmen E
    Nucl Instrum Methods Phys Res B; 2010 Apr; 268(7-8):708-711. PubMed ID: 20448803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities in low-level radiocarbon microtracing: applications and new technology.
    Vuong LT; Song Q; Lee HJ; Roffel AF; Shin SH; Shin YG; Dueker SR
    Future Sci OA; 2016 Mar; 2(1):FSO74. PubMed ID: 28031933
    [No Abstract]   [Full Text] [Related]  

  • 7. Precise radiocarbon determination in radioactive waste by a laser-based spectroscopic technique.
    Delli Santi MG; Insero G; Bartalini S; Cancio P; Carcione F; Galli I; Giusfredi G; Mazzotti D; Bulgheroni A; Martinez Ferri AI; Alvarez-Sarandes R; Aldave de Las Heras L; Rondinella V; De Natale P
    Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2122122119. PubMed ID: 35867750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.
    Barker J; Garner RC
    Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy.
    McCartt AD; Ognibene T; Bench G; Turteltaub K
    Nucl Instrum Methods Phys Res B; 2015 Oct; 361():277-280. PubMed ID: 27065506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy.
    McCartt AD; Ognibene TJ; Bench G; Turteltaub KW
    Anal Chem; 2016 Sep; 88(17):8714-9. PubMed ID: 27458740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocarbon Tracers in Toxicology and Medicine: Recent Advances in Technology and Science.
    Malfatti MA; Buchholz BA; Enright HA; Stewart BJ; Ognibene TJ; McCartt AD; Loots GG; Zimmermann M; Scharadin TM; Cimino GD; Jonas BA; Pan CX; Bench G; Henderson PT; Turteltaub KW
    Toxics; 2019 May; 7(2):. PubMed ID: 31075884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements.
    Persson A; Eilers G; Ryderfors L; Mukhtar E; Possnert G; Salehpour M
    Anal Chem; 2013 Jul; 85(14):6790-8. PubMed ID: 23742277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-Temperature Optical Detection of
    McCartt AD; Jiang J
    ACS Sens; 2022 Nov; 7(11):3258-3264. PubMed ID: 36315969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry.
    Dingley KH; Roberts ML; Velsko CA; Turteltaub KW
    Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of low background liquid scintillation counter for non-clinical ADME studies.
    Onishi A; Kogame A; Tagawa Y; Kondo T; Asahi S
    Xenobiotica; 2013 Jun; 43(6):520-6. PubMed ID: 23256624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerator mass spectrometry.
    Hellborg R; Skog G
    Mass Spectrom Rev; 2008; 27(5):398-427. PubMed ID: 18470926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of radiocarbon analysis for the detection of art forgeries.
    Hajdas I; Calcagnile L; Molnár M; Varga T; Quarta G
    Forensic Sci Int; 2022 Jun; 335():111292. PubMed ID: 35429776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of 14C activity by liquid scintillation counting.
    Krajcar Bronić I; Horvatincić N; Baresić J; Obelić B
    Appl Radiat Isot; 2009 May; 67(5):800-4. PubMed ID: 19243962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry.
    Warwick PE; Croudace IW; Hillegonds DJ
    Anal Chem; 2009 Mar; 81(5):1901-6. PubMed ID: 19178149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA.
    Turteltaub KW; Felton JS; Gledhill BL; Vogel JS; Southon JR; Caffee MW; Finkel RC; Nelson DE; Proctor ID; Davis JC
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5288-92. PubMed ID: 2371271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.