These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 3136929)
1. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Kjems J; Garrett RA Cell; 1988 Aug; 54(5):693-703. PubMed ID: 3136929 [TBL] [Abstract][Full Text] [Related]
2. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis. Kjems J; Jensen J; Olesen T; Garrett RA Can J Microbiol; 1989 Jan; 35(1):210-4. PubMed ID: 2470485 [TBL] [Abstract][Full Text] [Related]
3. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. Kjems J; Garrett RA Proc Natl Acad Sci U S A; 1991 Jan; 88(2):439-43. PubMed ID: 1899138 [TBL] [Abstract][Full Text] [Related]
4. A site-specific endonuclease encoded by a typical archaeal intron. Dalgaard JZ; Garrett RA; Belfort M Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5414-7. PubMed ID: 8390663 [TBL] [Abstract][Full Text] [Related]
5. Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Dalgaard JZ; Garrett RA Gene; 1992 Nov; 121(1):103-10. PubMed ID: 1427083 [TBL] [Abstract][Full Text] [Related]
6. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103 [TBL] [Abstract][Full Text] [Related]
7. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. Zhang F; Ramsay ES; Woodson SA RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500 [TBL] [Abstract][Full Text] [Related]
8. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Roman J; Woodson SA Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851 [TBL] [Abstract][Full Text] [Related]
9. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. Roman J; Rubin MN; Woodson SA RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1. Nomura N; Sako Y; Uchida A J Bacteriol; 1998 Jul; 180(14):3635-43. PubMed ID: 9658008 [TBL] [Abstract][Full Text] [Related]
11. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA. Roman J; Woodson SA RNA; 1995 Jul; 1(5):478-90. PubMed ID: 7489509 [TBL] [Abstract][Full Text] [Related]
12. Active self-splicing group I introns in 23S rRNA genes of hyperthermophilic bacteria, derived from introns in eukaryotic organelles. Nesbø CL; Doolittle WF Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10806-11. PubMed ID: 12947037 [TBL] [Abstract][Full Text] [Related]
13. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. Lykke-Andersen J; Garrett RA J Mol Biol; 1994 Nov; 243(5):846-55. PubMed ID: 7966305 [TBL] [Abstract][Full Text] [Related]
14. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Burggraf S; Larsen N; Woese CR; Stetter KO Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2547-50. PubMed ID: 8460170 [TBL] [Abstract][Full Text] [Related]
15. Organization of chloroplast ribosomal RNA genes and in vitro self-splicing activity of the large subunit rRNA intron from the green alga Chlorella vulgaris C-27. Kapoor M; Nagai T; Wakasugi T; Yoshinaga K; Sugiura M Curr Genet; 1997 Jun; 31(6):503-10. PubMed ID: 9211794 [TBL] [Abstract][Full Text] [Related]
16. Gene organization, transcription signals and processing of the single ribosomal RNA operon of the archaebacterium Thermoproteus tenax. Kjems J; Leffers H; Garrett RA; Wich G; Leinfelder W; Böck A Nucleic Acids Res; 1987 Jun; 15(12):4821-35. PubMed ID: 2439991 [TBL] [Abstract][Full Text] [Related]
17. An intron in the 23S rRNA gene of the Chlorella chloroplasts: complete nucleotide sequence of the 23S rRNA gene. Yamada T; Shimaji M Curr Genet; 1987; 11(5):347-52. PubMed ID: 3450409 [TBL] [Abstract][Full Text] [Related]
18. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Aagaard C; Dalgaard JZ; Garrett RA Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12285-9. PubMed ID: 8618886 [TBL] [Abstract][Full Text] [Related]
19. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Mohr G; Lambowitz AM Nature; 1991 Nov; 354(6349):164-7. PubMed ID: 1658660 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic and molecular characterization of a 23S rRNA gene positions the genus Campylobacter in the epsilon subdivision of the Proteobacteria and shows that the presence of transcribed spacers is common in Campylobacter spp. Trust TJ; Logan SM; Gustafson CE; Romaniuk PJ; Kim NW; Chan VL; Ragan MA; Guerry P; Gutell RR J Bacteriol; 1994 Aug; 176(15):4597-609. PubMed ID: 8045890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]