BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31369333)

  • 1. Protein arginine methyltransferase biology in humans during acute and chronic skeletal muscle plasticity.
    vanLieshout TL; Bonafiglia JT; Gurd BJ; Ljubicic V
    J Appl Physiol (1985); 2019 Sep; 127(3):867-880. PubMed ID: 31369333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein arginine methyltransferase expression, localization, and activity during disuse-induced skeletal muscle plasticity.
    Stouth DW; Manta A; Ljubicic V
    Am J Physiol Cell Physiol; 2018 Feb; 314(2):C177-C190. PubMed ID: 29092819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise-induced Protein Arginine Methyltransferase Expression in Skeletal Muscle.
    Vanlieshout TL; Stouth DW; Tajik T; Ljubicic V
    Med Sci Sports Exerc; 2018 Mar; 50(3):447-457. PubMed ID: 29112628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emergence of protein arginine methyltransferases in skeletal muscle and metabolic disease.
    vanLieshout TL; Ljubicic V
    Am J Physiol Endocrinol Metab; 2019 Dec; 317(6):E1070-E1080. PubMed ID: 31593503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein arginine methyltransferase expression and activity during myogenesis.
    Shen NY; Ng SY; Toepp SL; Ljubicic V
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29208765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The macromolecular complexes of histones affect protein arginine methyltransferase activities.
    Fulton MD; Cao M; Ho MC; Zhao X; Zheng YG
    J Biol Chem; 2021 Oct; 297(4):101123. PubMed ID: 34492270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders.
    Stouth DW; vanLieshout TL; Shen NY; Ljubicic V
    Front Physiol; 2017; 8():870. PubMed ID: 29163212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.
    Takahashi Y; Daitoku H; Yokoyama A; Nakayama K; Kim JD; Fukamizu A
    J Recept Signal Transduct Res; 2011 Apr; 31(2):168-72. PubMed ID: 21385054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation.
    Maron MI; Casill AD; Gupta V; Roth JS; Sidoli S; Query CC; Gamble MJ; Shechter D
    Elife; 2022 Jan; 11():. PubMed ID: 34984976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Study of
    Lorenzon L; Quilles JC; Campagnaro GD; Azevedo Orsine L; Almeida L; Veras F; Miserani Magalhães RD; Alcoforado Diniz J; Rodrigues Ferreira T; Kaysel Cruz A
    ACS Infect Dis; 2022 Mar; 8(3):516-532. PubMed ID: 35226477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific and age-dependent expression of protein arginine methyltransferases (PRMTs) in male rat tissues.
    Hong E; Lim Y; Lee E; Oh M; Kwon D
    Biogerontology; 2012 Jun; 13(3):329-36. PubMed ID: 22484624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerating muscle with arginine methylation.
    Blanc RS; Richard S
    Transcription; 2017 May; 8(3):175-178. PubMed ID: 28301308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A patent review of arginine methyltransferase inhibitors (2010-2018).
    Li X; Wang C; Jiang H; Luo C
    Expert Opin Ther Pat; 2019 Feb; 29(2):97-114. PubMed ID: 30640571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.
    Boulanger MC; Miranda TB; Clarke S; Di Fruscio M; Suter B; Lasko P; Richard S
    Biochem J; 2004 Apr; 379(Pt 2):283-9. PubMed ID: 14705965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-Specific Effect of CARM1 in Skeletal Muscle Adaptations to Exercise.
    Vanlieshout TL; Stouth DW; Raziee R; Sraka AJ; Masood HA; Ng SY; Mattina SR; Mikhail AI; Manta A; Ljubicic V
    Med Sci Sports Exerc; 2024 Mar; 56(3):486-498. PubMed ID: 37882083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous ablation of prmt-1 and prmt-5 abolishes asymmetric and symmetric arginine dimethylations in Caenorhabditis elegans.
    Hirota K; Shigekawa C; Araoi S; Sha L; Inagawa T; Kanou A; Kako K; Daitoku H; Fukamizu A
    J Biochem; 2017 Jun; 161(6):521-527. PubMed ID: 28158808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein arginine N-methyltransferase substrate preferences for different nη-substituted arginyl peptides.
    Thomas D; Koopmans T; Lakowski TM; Kreinin H; Vhuiyan MI; Sedlock SA; Bui JM; Martin NI; Frankel A
    Chembiochem; 2014 Jul; 15(11):1607-13. PubMed ID: 25044481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Arginine Methyltransferase Product Specificity Is Mediated by Distinct Active-site Architectures.
    Jain K; Warmack RA; Debler EW; Hadjikyriacou A; Stavropoulos P; Clarke SG
    J Biol Chem; 2016 Aug; 291(35):18299-308. PubMed ID: 27387499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition.
    Li Y; Dobrolecki LE; Sallas C; Zhang X; Kerr TD; Bisht D; Wang Y; Awasthi S; Kaundal B; Wu S; Peng W; Mendillo ML; Lu Y; Jeter CR; Peng G; Liu J; Westin SN; Sood AK; Lewis MT; Das J; Yi SS; Bedford MT; McGrail DJ; Sahni N
    Cell Rep Med; 2023 Dec; 4(12):101326. PubMed ID: 38118413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptidic transition state analogues as PRMT inhibitors.
    Zhang Y; van Haren MJ; Martin NI
    Methods; 2020 Mar; 175():24-29. PubMed ID: 31421210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.