BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31369698)

  • 1. Urethroplasty with a bilayered poly-D,L-lactide-co-ε-caprolactone scaffold seeded with allogenic mesenchymal stem cells.
    Yudintceva NM; Nashchekina YA; Mikhailova NA; Vinogradova TI; Yablonsky PK; Gorelova AA; Muraviov AN; Gorelov AV; Samusenko IA; Nikolaev BP; Yakovleva LY; Shevtsov MA
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):1010-1021. PubMed ID: 31369698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells.
    Yudintceva NM; Nashchekina YA; Blinova MI; Orlova NV; Muraviov AN; Vinogradova TI; Sheykhov MG; Shapkova EY; Emeljannikov DV; Yablonskii PK; Samusenko IA; Mikhrina AL; Pakhomov AV; Shevtsov MA
    Int J Nanomedicine; 2016; 11():4521-4533. PubMed ID: 27660444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.
    Xie J; Han Z; Naito M; Maeyama A; Kim SH; Kim YH; Matsuda T
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):80-8. PubMed ID: 20336738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transdifferentiation of autologous bone marrow cells on a collagen-poly(ε-caprolactone) scaffold for tissue engineering in complete lack of native urothelium.
    Zhao J; Zeiai S; Ekblad A; Nordenskjöld A; Hilborn J; Götherström C; Fossum M
    J R Soc Interface; 2014 Jul; 11(96):20140233. PubMed ID: 24789561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells.
    Rampichová M; Chvojka J; Buzgo M; Prosecká E; Mikeš P; Vysloužilová L; Tvrdík D; Kochová P; Gregor T; Lukáš D; Amler E
    Cell Prolif; 2013 Feb; 46(1):23-37. PubMed ID: 23216517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.
    Dahlin RL; Kinard LA; Lam J; Needham CJ; Lu S; Kasper FK; Mikos AG
    Biomaterials; 2014 Aug; 35(26):7460-9. PubMed ID: 24927682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds.
    Bean AC; Tuan RS
    Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Capability of Human Bone Marrow Mesenchymal Stem Cells and Endometrial Stem Cells to Differentiate into Motor Neurons on Electrospun Poly(ε-caprolactone) Scaffold.
    Shirian S; Ebrahimi-Barough S; Saberi H; Norouzi-Javidan A; Mousavi SM; Derakhshan MA; Arjmand B; Ai J
    Mol Neurobiol; 2016 Oct; 53(8):5278-87. PubMed ID: 26420037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection.
    Jing XH; Yang L; Duan XJ; Xie B; Chen W; Li Z; Tan HB
    Joint Bone Spine; 2008 Jul; 75(4):432-8. PubMed ID: 18448377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.
    Yang Z; Wu Y; Li C; Zhang T; Zou Y; Hui JH; Ge Z; Lee EH
    Tissue Eng Part A; 2012 Feb; 18(3-4):242-51. PubMed ID: 21902611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model.
    Wang DJ; Li MY; Huang WT; Lu MH; Hu C; Li K; Qiu JG; Gao X
    Connect Tissue Res; 2015 Nov; 56(6):434-9. PubMed ID: 25943462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cell interacted with PLCL braided scaffold coated with poly-l-lysine/hyaluronic acid for ligament tissue engineering.
    Liu X; Laurent C; Du Q; Targa L; Cauchois G; Chen Y; Wang X; de Isla N
    J Biomed Mater Res A; 2018 Dec; 106(12):3042-3052. PubMed ID: 30194699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study.
    Sartoneva R; Nordback PH; Haimi S; Grijpma DW; Lehto K; Rooney N; Seppänen-Kaijansinkko R; Miettinen S; Lahdes-Vasama T
    Tissue Eng Part A; 2018 Jan; 24(1-2):117-127. PubMed ID: 28463605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering.
    Li T; Tian L; Liao S; Ding X; Irvine SA; Ramakrishna S
    J Mech Behav Biomed Mater; 2019 Oct; 98():48-57. PubMed ID: 31195187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.