These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31369806)
1. Novel photodynamic coating reduces the bioburden on near-patient surfaces thereby reducing the risk for onward pathogen transmission: a field study in two hospitals. Eichner A; Holzmann T; Eckl DB; Zeman F; Koller M; Huber M; Pemmerl S; Schneider-Brachert W; Bäumler W J Hosp Infect; 2020 Jan; 104(1):85-91. PubMed ID: 31369806 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic coatings kill bacteria on near-patient surfaces in intensive care units with low light intensities. Kieninger B; Fechter R; Bäumler W; Raab D; Rath A; Caplunik-Pratsch A; Schmid S; Müller T; Schneider-Brachert W; Eichner A J Hosp Infect; 2024 Nov; 153():39-46. PubMed ID: 39181452 [TBL] [Abstract][Full Text] [Related]
3. Nanosilver/DCOIT-containing surface coating effectively and constantly reduces microbial load in emergency room surfaces. Weber J; Henssler L; Zeman F; Pfeifer C; Alt V; Nerlich M; Huber M; Herbst T; Koller M; Schneider-Brachert W; Kerschbaum M; Holzmann T J Hosp Infect; 2023 May; 135():90-97. PubMed ID: 36958698 [TBL] [Abstract][Full Text] [Related]
4. How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals? Reid M; Whatley V; Spooner E; Nevill AM; Cooper M; Ramsden JJ; Dancer SJ Infect Control Hosp Epidemiol; 2018 Apr; 39(4):398-404. PubMed ID: 29428003 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial Photodynamic Coatings Reduce the Microbial Burden on Environmental Surfaces in Public Transportation-A Field Study in Buses. Kalb L; Bäßler P; Schneider-Brachert W; Eckl DB Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206511 [TBL] [Abstract][Full Text] [Related]
6. Nano-TiO2-based photocatalytic disinfection of environmental surfaces contaminated by meticillin-resistant Staphylococcus aureus. Petti S; Messano GA J Hosp Infect; 2016 May; 93(1):78-82. PubMed ID: 26996090 [TBL] [Abstract][Full Text] [Related]
7. Impact of pulsed xenon ultraviolet disinfection on surface contamination in a hospital facility's expressed human milk feed preparation area. Dippenaar R; Smith J BMC Infect Dis; 2018 Feb; 18(1):91. PubMed ID: 29471796 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital. Villacís JE; Lopez M; Passey D; Santillán MH; Verdezoto G; Trujillo F; Paredes G; Alarcón C; Horvath R; Stibich M BMC Infect Dis; 2019 Jul; 19(1):575. PubMed ID: 31269912 [TBL] [Abstract][Full Text] [Related]
10. Self-Disinfecting Copper Beds Sustain Terminal Cleaning and Disinfection Effects throughout Patient Care. Schmidt MG; Attaway HH; Fairey SE; Howard J; Mohr D; Craig S Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31704675 [TBL] [Abstract][Full Text] [Related]
11. Is there an association between airborne and surface microbes in the critical care environment? Smith J; Adams CE; King MF; Noakes CJ; Robertson C; Dancer SJ J Hosp Infect; 2018 Nov; 100(3):e123-e129. PubMed ID: 29649556 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of an ultraviolet room disinfection protocol to decrease nursing home microbial burden, infection and hospitalization rates. Kovach CR; Taneli Y; Neiman T; Dyer EM; Arzaga AJ; Kelber ST BMC Infect Dis; 2017 Mar; 17(1):186. PubMed ID: 28253849 [TBL] [Abstract][Full Text] [Related]
13. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home. Meakin NS; Bowman C; Lewis MR; Dancer SJ J Hosp Infect; 2012 Feb; 80(2):122-7. PubMed ID: 22196853 [TBL] [Abstract][Full Text] [Related]
14. Long-term antimicrobial effectiveness of a silver-impregnated foil on high-touch hospital surfaces in patient rooms. Widmer AF; Kuster S; Dangel M; Jäger S; Frei R Antimicrob Resist Infect Control; 2021 Aug; 10(1):120. PubMed ID: 34399839 [TBL] [Abstract][Full Text] [Related]
15. Evaluating use of neutral electrolyzed water for cleaning near-patient surfaces. Stewart M; Bogusz A; Hunter J; Devanny I; Yip B; Reid D; Robertson C; Dancer SJ Infect Control Hosp Epidemiol; 2014 Dec; 35(12):1505-10. PubMed ID: 25419773 [TBL] [Abstract][Full Text] [Related]
16. Biofilm contamination of high-touched surfaces in intensive care units: epidemiology and potential impacts. Costa DM; Johani K; Melo DS; Lopes LKO; Lopes Lima LKO; Tipple AFV; Hu H; Vickery K Lett Appl Microbiol; 2019 Apr; 68(4):269-276. PubMed ID: 30758060 [TBL] [Abstract][Full Text] [Related]
18. Effect of a shielded continuous ultraviolet-C air disinfection device on reduction of air and surface microbial contamination in a pediatric oncology outpatient care unit. Hakim H; Gilliam C; Tang L; Xu J; Lee LD Am J Infect Control; 2019 Oct; 47(10):1248-1254. PubMed ID: 31053372 [TBL] [Abstract][Full Text] [Related]
19. Impact of a Novel Antimicrobial Surface Coating on Health Care-Associated Infections and Environmental Bioburden at 2 Urban Hospitals. Ellingson KD; Pogreba-Brown K; Gerba CP; Elliott SP Clin Infect Dis; 2020 Nov; 71(8):1807-1813. PubMed ID: 31665372 [TBL] [Abstract][Full Text] [Related]
20. No-Touch Automated Disinfection System for Decontamination of Surfaces in Hospitals. Tarka P; Nitsch-Osuch A Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]