These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31369925)

  • 1. Lipids extraction from wet Chlorella pyrenoidosa sludge using recycled [BMIM]Cl.
    Lu H; Yu X; Li H; Tu ST; Sebastian S
    Bioresour Technol; 2019 Nov; 291():121819. PubMed ID: 31369925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ solvent recovery by using hydrophobic/oleophilic filter during wet lipid extraction from microalgae.
    Kim H; Shin J; Lee D; Im SG; Chang YK
    Bioprocess Biosyst Eng; 2019 Sep; 42(9):1447-1455. PubMed ID: 31076866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from
    Vashist V; Chauhan D; Bhattacharya A; Rai MP
    Nat Prod Res; 2020 Oct; 34(19):2852-2856. PubMed ID: 31081364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biorefining and the Functional Properties of Proteins from Lipid and Pigment Extract Residue of
    Lu K; Zhao X; Ho SH; Ma R; Xie Y; Chen J
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31374944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bioassay-guided isolation of functional components from hot water extract of Chlorella pyrenoidosa].
    Jia J; Xu D; Zhuang X; Zhang D; Tao L; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 May; 33(5):743-756. PubMed ID: 28876029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on the Chlorella pyrenoidosa cultivation technology based on the excess sludge utilization].
    Ji WW; Xia HL; Fang ZG; Liu HJ
    Huan Jing Ke Xue; 2013 Feb; 34(2):622-8. PubMed ID: 23668132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-step method for rapid extraction of total lipids from green microalgae.
    Axelsson M; Gentili F
    PLoS One; 2014; 9(2):e89643. PubMed ID: 24586930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.
    Wahidin S; Idris A; Shaleh SRM
    Bioresour Technol; 2016 Apr; 206():150-154. PubMed ID: 26851899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid extraction from microalgae cell using persulfate-based oxidation.
    Seo YH; Sung M; Oh YK; Han JI
    Bioresour Technol; 2016 Jan; 200():1073-5. PubMed ID: 26614226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae.
    Cheng J; Sun J; Huang Y; Feng J; Zhou J; Cen K
    Bioresour Technol; 2013 Dec; 150():67-72. PubMed ID: 24152788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides.
    Ren X; Zhao X; Turcotte F; Deschênes JS; Tremblay R; Jolicoeur M
    Microb Cell Fact; 2017 Feb; 16(1):26. PubMed ID: 28187768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe
    Liu Y; Jin W; Zhou X; Han SF; Tu R; Feng X; Jensen PD; Wang Q
    Bioresour Technol; 2019 Oct; 290():121771. PubMed ID: 31302468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of CO
    Tang W; Ho Row K
    Bioresour Technol; 2020 Jan; 296():122309. PubMed ID: 31677409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of Lipids from Chlorella saccharophila Using High-Pressure Homogenization Followed by Three Phase Partitioning.
    Mulchandani K; Kar JR; Singhal RS
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1613-26. PubMed ID: 25969157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP).
    Cao S; Zhou X; Jin W; Wang F; Tu R; Han S; Chen H; Chen C; Xie GJ; Ma F
    Bioresour Technol; 2017 Nov; 244(Pt 2):1400-1406. PubMed ID: 28539241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method.
    Araujo GS; Matos LJ; Fernandes JO; Cartaxo SJ; Gonçalves LR; Fernandes FA; Farias WR
    Ultrason Sonochem; 2013 Jan; 20(1):95-8. PubMed ID: 22938999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.
    Ellison CR; Overa S; Boldor D
    Ultrason Sonochem; 2019 Mar; 51():496-503. PubMed ID: 29793838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.