These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31370046)

  • 1. Electrical and thermal conductivities of polycrystalline platinum nanowires.
    Wang J; Yu H; Walbert T; Antoni M; Wang C; Xi W; Muench F; Yang J; Chen Y; Ensinger W
    Nanotechnology; 2019 Nov; 30(45):455706. PubMed ID: 31370046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and electrical conduction in ultrathin metallic films: 7 nm down to sub-nanometer thickness.
    Lin H; Xu S; Wang X; Mei N
    Small; 2013 Aug; 9(15):2585-94. PubMed ID: 23436742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms.
    Dong L; Wei G; Cheng T; Tang J; Ye X; Hong M; Hu L; Yin R; Zhao S; Cai G; Shi Y; Pan B; Jiang C; Ren F
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8886-8896. PubMed ID: 31971777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical and Thermal Transport through Silver Nanowires and Their Contacts: Effects of Elastic Stiffening.
    Zhao Y; Fitzgerald ML; Tao Y; Pan Z; Sauti G; Xu D; Xu YQ; Li D
    Nano Lett; 2020 Oct; 20(10):7389-7396. PubMed ID: 32833462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and electrical conduction in 6.4 nm thin gold films.
    Lin H; Xu S; Li C; Dong H; Wang X
    Nanoscale; 2013 Jun; 5(11):4652-6. PubMed ID: 23604205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point.
    Zhu YF; Lang XY; Zheng WT; Jiang Q
    ACS Nano; 2010 Jul; 4(7):3781-8. PubMed ID: 20557119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity and electrical resistivity of single copper nanowires.
    Peng WT; Chen FR; Lu MC
    Phys Chem Chem Phys; 2021 Sep; 23(36):20359-20364. PubMed ID: 34490856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Lorenz Number of the Point Contact between Silver Nanowires.
    Xiong Y; Zhao Y; Tao Y; Yao F; Li D; Xu D
    Nano Lett; 2020 Dec; 20(12):8576-8583. PubMed ID: 33197194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.
    Yoneoka S; Lee J; Liger M; Yama G; Kodama T; Gunji M; Provine J; Howe RT; Goodson KE; Kenny TW
    Nano Lett; 2012 Feb; 12(2):683-6. PubMed ID: 22224582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures.
    Rauber M; Muench F; Toimil-Molares ME; Ensinger W
    Nanotechnology; 2012 Nov; 23(47):475710. PubMed ID: 23117337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide.
    He J; Zhang L; Liu L
    Phys Chem Chem Phys; 2019 Jun; 21(23):12192-12200. PubMed ID: 31149685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of a Te-depleted surface on the thermoelectric transport properties of Bi₂Te₃ nanowires.
    Hamdou B; Beckstedt A; Kimling J; Dorn A; Akinsinde L; Bäßler S; Pippel E; Nielsch K
    Nanotechnology; 2014 Sep; 25(36):365401. PubMed ID: 25140827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical transport and thermoelectric properties of boron carbide nanowires.
    Kirihara K; Mukaida M; Shimizu Y
    Nanotechnology; 2017 Apr; 28(14):145404. PubMed ID: 28207418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide.
    Shilyaeva YI; Bardushkin VV; Gavrilov SA; Silibin MV; Yakovlev VB; Borgardt NI; Volkov RL; Smirnov DI; Zheludkevich ML
    Phys Chem Chem Phys; 2014 Sep; 16(36):19394-401. PubMed ID: 25101924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.