These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 3137030)
1. A mathematical model of the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1988 Aug; 175(3):661-72. PubMed ID: 3137030 [TBL] [Abstract][Full Text] [Related]
2. A rapid-equilibrium model for the control of the Calvin photosynthesis cycle by cytosolic orthophosphate. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1987 Dec; 169(2):423-9. PubMed ID: 3691500 [TBL] [Abstract][Full Text] [Related]
3. Model studies of the regulation of the Calvin photosynthesis cycle by cytosolic metabolites. Pettersson G; Ryde-Pettersson U Biomed Biochim Acta; 1990; 49(8-9):723-32. PubMed ID: 2128020 [TBL] [Abstract][Full Text] [Related]
4. Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Poolman MG; Fell DA; Raines CA Eur J Biochem; 2003 Feb; 270(3):430-9. PubMed ID: 12542693 [TBL] [Abstract][Full Text] [Related]
5. Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1989 Dec; 186(3):683-7. PubMed ID: 2606112 [TBL] [Abstract][Full Text] [Related]
6. Effects of metabolite binding to ribulosebisphosphate carboxylase on the activity of the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1988 Nov; 177(2):351-5. PubMed ID: 3142774 [TBL] [Abstract][Full Text] [Related]
7. On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1989 Jun; 182(2):373-7. PubMed ID: 2544426 [TBL] [Abstract][Full Text] [Related]
8. Modelling photosynthesis and its control. Poolman MG; Fell DA; Thomas S J Exp Bot; 2000 Feb; 51 Spec No():319-28. PubMed ID: 10938839 [TBL] [Abstract][Full Text] [Related]
9. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach. Williams JF; MacLeod JK Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443 [TBL] [Abstract][Full Text] [Related]
10. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator. Häusler RE; Schlieben NH; Flügge UI Planta; 2000 Feb; 210(3):383-90. PubMed ID: 10750895 [TBL] [Abstract][Full Text] [Related]
11. The influence of sugar synthesis and transport rates on bioenergetics and kinetics of higher plant photosynthesis. Tuleshova A; Badretdinov D; Kukushkin A; Khuznetsova S Bioelectrochemistry; 2002 May; 56(1-2):203-5. PubMed ID: 12009475 [TBL] [Abstract][Full Text] [Related]
12. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. Janasch M; Asplund-Samuelsson J; Steuer R; Hudson EP J Exp Bot; 2019 Feb; 70(3):973-983. PubMed ID: 30371804 [TBL] [Abstract][Full Text] [Related]
13. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells. Gumaa KA; McLean P Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673 [TBL] [Abstract][Full Text] [Related]
14. The oxidative pentose phosphate pathway in photosynthesis: a tale of two shunts. Xu Y; Schmiege SC; Sharkey TD New Phytol; 2024 Jun; 242(6):2453-2463. PubMed ID: 38567702 [TBL] [Abstract][Full Text] [Related]
15. Metabolites controlling the rate of starch synthesis in the chloroplast of C3 plants. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1989 Jan; 179(1):169-72. PubMed ID: 2537197 [TBL] [Abstract][Full Text] [Related]
16. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Häusler RE; Schlieben NH; Nicolay P; Fischer K; Fischer KL; Flügge UI Planta; 2000 Feb; 210(3):371-82. PubMed ID: 10750894 [TBL] [Abstract][Full Text] [Related]
17. Regulation of photosynthetic carbon metabolism. The effect of inorganic phosphate on stromal sedoheptulose-1,7-bisphosphatase. Woodrow IE; Murphy DJ; Walker DA Eur J Biochem; 1983 Apr; 132(1):121-3. PubMed ID: 6301819 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Fridlyand LE; Scheibe R Biosystems; 1999 Aug; 51(2):79-93. PubMed ID: 10482420 [TBL] [Abstract][Full Text] [Related]
19. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482 [TBL] [Abstract][Full Text] [Related]
20. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Furbank RT; Lilley RM Biochim Biophys Acta; 1980 Aug; 592(1):65-75. PubMed ID: 6772219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]