These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31370420)

  • 21. On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem.
    Nielsen BF; Cai X; Lysaker M
    Math Biosci; 2007 Dec; 210(2):523-53. PubMed ID: 17822722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.
    Shaw RM; Rudy Y
    Cardiovasc Res; 1997 Aug; 35(2):256-72. PubMed ID: 9349389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability.
    Fletcher P; Bertram R; Tabak J
    J Comput Neurosci; 2016 Jun; 40(3):331-45. PubMed ID: 27033230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategy for control of complex low-dimensional dynamics in cardiac tissue.
    Watanabe M; Gilmour RF
    J Math Biol; 1996 Nov; 35(1):73-87. PubMed ID: 9002241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subthreshold parameters of cardiac tissue in a bi-layer computer model of heart failure.
    Zlochiver S
    Cardiovasc Eng; 2010 Dec; 10(4):190-200. PubMed ID: 21082251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system.
    Pásek M; Christé G; Simurda J
    Gen Physiol Biophys; 2003 Sep; 22(3):355-68. PubMed ID: 14986886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time computer simulations of excitable media: JAVA as a scientific language and as a wrapper for C and FORTRAN programs.
    Fenton FH; Cherry EM; Hastings HM; Evans SJ
    Biosystems; 2002 Jan; 64(1-3):73-96. PubMed ID: 11755491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global identifiability of linear compartmental models--a computer algebra algorithm.
    Audoly S; D'Angiò L; Saccomani MP; Cobelli C
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):36-47. PubMed ID: 9444838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic fields from simulated cardiac action currents.
    Barach JP; Wikswo JP
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):969-74. PubMed ID: 7959804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
    Teka W; Stockton D; Santamaria F
    PLoS Comput Biol; 2016 Mar; 12(3):e1004776. PubMed ID: 26937967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of fractional changes in peak gNa, -gNa, ENa, and h infinity (V) of cardiac cells from Vmax of the propagating action potential.
    Roberge FA; Boucher L
    IEEE Trans Biomed Eng; 1990 May; 37(5):489-99. PubMed ID: 2345005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.
    Gray RA; Pathmanathan P
    PLoS Comput Biol; 2016 Oct; 12(10):e1005087. PubMed ID: 27749895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue.
    Roth BJ
    Ann Biomed Eng; 1996; 24(6):639-46. PubMed ID: 8923984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.
    Devenyi RA; Ortega FA; Groenendaal W; Krogh-Madsen T; Christini DJ; Sobie EA
    J Physiol; 2017 Apr; 595(7):2301-2317. PubMed ID: 27779762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?
    Muñoz-Tamayo R; Puillet L; Daniel JB; Sauvant D; Martin O; Taghipoor M; Blavy P
    Animal; 2018 Apr; 12(4):701-712. PubMed ID: 29096725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp.
    Ducouret P
    Br J Pharmacol; 1976 Jun; 57(2):163-84. PubMed ID: 1084773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational framework for testing arrhythmia marker sensitivities to model parameters in functionally calibrated populations of atrial cells.
    Vagos MR; Arevalo H; de Oliveira BL; Sundnes J; Maleckar MM
    Chaos; 2017 Sep; 27(9):093941. PubMed ID: 28964122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A massively parallel computer model of propagation through a two-dimensional cardiac syncytium.
    Fishler MG; Thakor NV
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1694-9. PubMed ID: 1721160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.