These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31370458)

  • 21. High-pressure polymorphs of olivine and the 660-km seismic discontinuity.
    Chudinovskikh L; Boehler R
    Nature; 2001 May; 411(6837):574-7. PubMed ID: 11385569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser heating in diamond anvil cells: developments in pulsed and continuous techniques.
    Goncharov AF; Montoya JA; Subramanian N; Struzhkin VV; Kolesnikov A; Somayazulu M; Hemley RJ
    J Synchrotron Radiat; 2009 Nov; 16(Pt 6):769-72. PubMed ID: 19844012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An accurate method to determine nano-film thickness in diamond anvil cells for time domain thermoreflectance measurements.
    Zhang Z; Fan X; Zhu J; Zhou J; Tang D
    Rev Sci Instrum; 2022 Apr; 93(4):043904. PubMed ID: 35489893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale.
    Sun J; Lv G; Cahill DG
    Rev Sci Instrum; 2023 Jan; 94(1):014903. PubMed ID: 36725548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells.
    Huang X; Li F; Zhou Q; Meng Y; Litasov KD; Wang X; Liu B; Cui T
    Sci Rep; 2016 Feb; 6():19923. PubMed ID: 26883479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tungsten external heater for BX90 diamond anvil cells with a range up to 1700 K.
    Yan J; Doran A; MacDowell AA; Kalkan B
    Rev Sci Instrum; 2021 Jan; 92(1):013903. PubMed ID: 33514245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ high P-T Raman spectroscopy and laser heating of carbon dioxide.
    Santoro M; Lin JF; Mao HK; Hemley RJ
    J Chem Phys; 2004 Aug; 121(6):2780-7. PubMed ID: 15281882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure.
    Dalton DA; Hsieh WP; Hohensee GT; Cahill DG; Goncharov AF
    Sci Rep; 2013; 3():2400. PubMed ID: 23929068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team.
    Meng Y; Hrubiak R; Rod E; Boehler R; Shen G
    Rev Sci Instrum; 2015 Jul; 86(7):072201. PubMed ID: 26233341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-temperature experiments using a resistively heated high-pressure membrane diamond anvil cell.
    Jenei Z; Cynn H; Visbeck K; Evans WJ
    Rev Sci Instrum; 2013 Sep; 84(9):095114. PubMed ID: 24089873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A virtual experiment control and data acquisition system for in situ laser heated diamond anvil cell Raman spectroscopy.
    Subramanian N; Struzhkin VV; Goncharov AF; Hemley RJ
    Rev Sci Instrum; 2010 Sep; 81(9):093906. PubMed ID: 20886993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal conductance of metal-diamond interfaces at high pressure.
    Hohensee GT; Wilson RB; Cahill DG
    Nat Commun; 2015 Mar; 6():6578. PubMed ID: 25744853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal transport in shock wave-compressed solids using pulsed laser heating.
    La Lone BM; Capelle G; Stevens GD; Turley WD; Veeser LR
    Rev Sci Instrum; 2014 Jul; 85(7):073903. PubMed ID: 25085148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IR pyrometry in diamond anvil cell above 400 K.
    Shuker P; Melchior A; Assor Y; Belker D; Sterer E
    Rev Sci Instrum; 2008 Jul; 79(7):073908. PubMed ID: 18681717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal diffusivity measurement of microscale slabs by rear-surface detection thermoreflectance technique.
    Song Z; Zhang L; Wang D; Tan S; Ban H
    Rev Sci Instrum; 2021 Mar; 92(3):034903. PubMed ID: 33819989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8.
    Kawaguchi-Imada S; Sinmyo R; Ohta K; Kawaguchi S; Kobayashi T
    J Synchrotron Radiat; 2024 Mar; 31(Pt 2):343-354. PubMed ID: 38372672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gated detection of supercontinuum pulses enables optical probing of solid and molten silicates at extreme pressure-temperature conditions.
    Lobanov SS; Schifferle L; Schulz R
    Rev Sci Instrum; 2020 May; 91(5):053103. PubMed ID: 32486715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source.
    Anzellini S; Kleppe AK; Daisenberger D; Wharmby MT; Giampaoli R; Boccato S; Baron MA; Miozzi F; Keeble DS; Ross A; Gurney S; Thompson J; Knap G; Booth M; Hudson L; Hawkins D; Walter MJ; Wilhelm H
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1860-1868. PubMed ID: 30407199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.
    Kunz M; Caldwell WA; Miyagi L; Wenk HR
    Rev Sci Instrum; 2007 Jun; 78(6):063907. PubMed ID: 17614626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of thermal diffusivity of Ti thin film by thermoreflectance and periodic heating technique.
    Matsui G; Kato H
    Rev Sci Instrum; 2011 Mar; 82(3):034905. PubMed ID: 21456782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.