These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 31370463)
1. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463 [TBL] [Abstract][Full Text] [Related]
2. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
3. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
4. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements. Cano ME; Barrera A; Estrada JC; Hernandez A; Cordova T Rev Sci Instrum; 2011 Nov; 82(11):114904. PubMed ID: 22129001 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
6. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
7. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. Lacroix LM; Carrey J; Respaud M Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430 [TBL] [Abstract][Full Text] [Related]
8. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
9. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Chen SW; Lai JJ; Chiang CL; Chen CL Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645 [TBL] [Abstract][Full Text] [Related]
10. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy. Pearce JA; Cook JR; Emelianov SY Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2751-4. PubMed ID: 21096213 [TBL] [Abstract][Full Text] [Related]
11. Magnetic nanoparticles for interstitial thermotherapy--feasibility, tolerance and achieved temperatures. Wust P; Gneveckow U; Johannsen M; Böhmer D; Henkel T; Kahmann F; Sehouli J; Felix R; Ricke J; Jordan A Int J Hyperthermia; 2006 Dec; 22(8):673-85. PubMed ID: 17390997 [TBL] [Abstract][Full Text] [Related]
12. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050 [TBL] [Abstract][Full Text] [Related]
13. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814 [TBL] [Abstract][Full Text] [Related]
14. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302 [TBL] [Abstract][Full Text] [Related]
15. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer. Sanapala KK; Hewaparakrama K; Kang KA Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781 [TBL] [Abstract][Full Text] [Related]
16. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia. Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485 [TBL] [Abstract][Full Text] [Related]
17. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
18. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Usov NA; Nesmeyanov MS; Tarasov VP Sci Rep; 2018 Jan; 8(1):1224. PubMed ID: 29352175 [TBL] [Abstract][Full Text] [Related]
19. Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl₂-NaNO₃-NaOH aqueous system. Li Z; Kawashita M; Araki N; Mitsumori M; Hiraoka M; Doi M J Biomater Appl; 2011 Mar; 25(7):643-61. PubMed ID: 20207773 [TBL] [Abstract][Full Text] [Related]
20. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Basel MT; Balivada S; Wang H; Shrestha TB; Seo GM; Pyle M; Abayaweera G; Dani R; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL Int J Nanomedicine; 2012; 7():297-306. PubMed ID: 22287840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]