These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31370509)
1. Off-the-shelf DFT-DISPersion methods: Are they now "on-trend" for organic molecular crystals? Geatches D; Rosbottom I; Marchese Robinson RL; Byrne P; Hasnip P; Probert MIJ; Jochym D; Maloney A; Roberts KJ J Chem Phys; 2019 Jul; 151(4):044106. PubMed ID: 31370509 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related]
3. Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions. Bedoya-Martínez N; Giunchi A; Salzillo T; Venuti E; Della Valle RG; Zojer E J Chem Theory Comput; 2018 Aug; 14(8):4380-4390. PubMed ID: 30021070 [TBL] [Abstract][Full Text] [Related]
4. Performance of Dispersion-Inclusive Density Functional Theory Methods for Energetic Materials. O'Connor D; Bier I; Hsieh YT; Marom N J Chem Theory Comput; 2022 Jul; 18(7):4456-4471. PubMed ID: 35759249 [TBL] [Abstract][Full Text] [Related]
5. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F; Grüneis A; Bučko T; Hafner J J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253 [TBL] [Abstract][Full Text] [Related]
6. Dispersion-corrected density functional theory calculations of the molecular binding of n-alkanes on Pd(111) and PdO(101). Antony A; Hakanoglu C; Asthagiri A; Weaver JF J Chem Phys; 2012 Feb; 136(5):054702. PubMed ID: 22320754 [TBL] [Abstract][Full Text] [Related]
7. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. Reilly AM; Tkatchenko A J Chem Phys; 2013 Jul; 139(2):024705. PubMed ID: 23862957 [TBL] [Abstract][Full Text] [Related]
8. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). Brandenburg JG; Grimme S J Phys Chem Lett; 2014 Jun; 5(11):1785-9. PubMed ID: 26273854 [TBL] [Abstract][Full Text] [Related]
9. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
10. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. Ehrlich S; Moellmann J; Reckien W; Bredow T; Grimme S Chemphyschem; 2011 Dec; 12(17):3414-20. PubMed ID: 22012803 [TBL] [Abstract][Full Text] [Related]
11. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study. Pandey KK; Patidar P; Bariya PK; Patidar SK; Vishwakarma R Dalton Trans; 2014 Jul; 43(26):9955-67. PubMed ID: 24850167 [TBL] [Abstract][Full Text] [Related]
12. Reliable DFT-based estimates of cohesive energies of organic solids: the anthracene crystal. Sancho-García JC; Olivier Y J Chem Phys; 2012 Nov; 137(19):194311. PubMed ID: 23181310 [TBL] [Abstract][Full Text] [Related]
13. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286 [TBL] [Abstract][Full Text] [Related]
14. Dispersion-corrected density functional theory for aromatic interactions in complex systems. Ehrlich S; Moellmann J; Grimme S Acc Chem Res; 2013 Apr; 46(4):916-26. PubMed ID: 22702344 [TBL] [Abstract][Full Text] [Related]
15. Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. Turner MJ; Grabowsky S; Jayatilaka D; Spackman MA J Phys Chem Lett; 2014 Dec; 5(24):4249-55. PubMed ID: 26273970 [TBL] [Abstract][Full Text] [Related]
16. Empirically augmented density functional theory for predicting lattice energies of aspirin, acetaminophen polymorphs, and ibuprofen homochiral and racemic crystals. Li T; Feng S Pharm Res; 2006 Oct; 23(10):2326-32. PubMed ID: 16927187 [TBL] [Abstract][Full Text] [Related]
17. Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal-organic frameworks and in acidic zeolites. Rehak FR; Piccini G; Alessio M; Sauer J Phys Chem Chem Phys; 2020 Apr; 22(14):7577-7585. PubMed ID: 32227013 [TBL] [Abstract][Full Text] [Related]
18. Extension and evaluation of the D4 London-dispersion model for periodic systems. Caldeweyher E; Mewes JM; Ehlert S; Grimme S Phys Chem Chem Phys; 2020 Apr; 22(16):8499-8512. PubMed ID: 32292979 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems. Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296 [TBL] [Abstract][Full Text] [Related]
20. Impact of dihydrogen bonding on lattice energies and sublimation enthalpies of crystalline [H Gladfelter WL; Cramer CJ RSC Adv; 2019 Sep; 9(50):29448-29455. PubMed ID: 35528427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]