These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31370521)

  • 1. Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar.
    Wang H; Wen K; You X; Mao Q; Luo KH; Pilling MJ; Robertson SH
    J Chem Phys; 2019 Jul; 151(4):044301. PubMed ID: 31370521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical unimolecular kinetics for CH4 + M ⇄ CH3 + H + M in eight baths, M = He, Ne, Ar, Kr, H2, N2, CO, and CH4.
    Jasper AW; Miller JA
    J Phys Chem A; 2011 Jun; 115(24):6438-55. PubMed ID: 21598912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.
    Kim H; Paul AK; Pratihar S; Hase WL
    J Phys Chem A; 2016 Jul; 120(27):5187-96. PubMed ID: 27182630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisional Intermolecular Energy Transfer from a N
    Paul AK; Donzis D; Hase WL
    J Phys Chem A; 2017 Jun; 121(21):4049-4057. PubMed ID: 28485962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified model for simulating liquid and gas phase, intermolecular energy transfer: N₂ + C₆F₆ collisions.
    Paul AK; Kohale SC; Pratihar S; Sun R; North SW; Hase WL
    J Chem Phys; 2014 May; 140(19):194103. PubMed ID: 24852526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collisional energy transfer in unimolecular reactions: direct classical trajectories for CH4 <--> CH3 + H in helium.
    Jasper AW; Miller JA
    J Phys Chem A; 2009 May; 113(19):5612-9. PubMed ID: 19419224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Bath Gas Dependence in Unimolecular Reaction Rates.
    Matsugi A
    J Phys Chem A; 2019 Jan; 123(4):764-770. PubMed ID: 30620597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcanonical Rate Constants for Unimolecular Reactions in the Low-Pressure Limit.
    Jasper AW
    J Phys Chem A; 2020 Feb; 124(7):1205-1226. PubMed ID: 31944118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision Frequency for Energy Transfer in Unimolecular Reactions.
    Matsugi A
    J Phys Chem A; 2018 Mar; 122(8):1972-1985. PubMed ID: 29402089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Dynamics Simulation of Energy Transfer: Propylbenzene Cation and N
    Kim H; Bhandari HN; Pratihar S; Hase WL
    J Phys Chem A; 2019 Mar; 123(12):2301-2309. PubMed ID: 30794410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of intermolecular energy transfer from vibrationally excited benzene in mixed nitrogen-benzene baths at 140 K and 300 K.
    Ahamed SS; Kim H; Paul AK; West NA; Winner JD; Donzis DA; North SW; Hase WL
    J Chem Phys; 2020 Oct; 153(14):144116. PubMed ID: 33086796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra- and intermolecular energy transfer in highly excited ozone complexes.
    Ivanov MV; Grebenshchikov SY; Schinke R
    J Chem Phys; 2004 Jun; 120(21):10015-24. PubMed ID: 15268022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for energy transfer in collisions of atoms with highly excited molecules.
    Houston PL; Conte R; Bowman JM
    J Phys Chem A; 2015 May; 119(20):4695-710. PubMed ID: 25907301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules.
    Barker JR; Weston RE
    J Phys Chem A; 2010 Oct; 114(39):10619-33. PubMed ID: 20843047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation.
    Jasper AW; Miller JA; Klippenstein SJ
    J Phys Chem A; 2013 Nov; 117(47):12243-55. PubMed ID: 24144294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical trajectory study of energy transfer in collisions of highly excited allyl radical with argon.
    Conte R; Houston PL; Bowman JM
    J Phys Chem A; 2013 Dec; 117(51):14028-41. PubMed ID: 24299271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the energy and temperature dependence of C6H6 (∗) collisional relaxation via time-dependent bath temperature measurements.
    West NA; Winner JD; Bowersox RD; North SW
    J Chem Phys; 2016 Jul; 145(1):014308. PubMed ID: 27394109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Dynamics Simulations of Energy Transfer for Propylbenzene Cation and He Collisions.
    Kim H; Saha B; Pratihar S; Majumder M; Hase WL
    J Phys Chem A; 2017 Oct; 121(40):7494-7502. PubMed ID: 28926700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.