These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31370534)

  • 1. On the magnetic properties of nanodiamonds: Electronic g-tensor calculations.
    Masys Š; Rinkevicius Z; Tamulienė J
    J Chem Phys; 2019 Jul; 151(4):044305. PubMed ID: 31370534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic g-tensors of nanodiamonds: Dependence on the size, shape, and surface functionalization.
    Masys Š; Rinkevicius Z; Tamulienė J
    J Chem Phys; 2019 Oct; 151(14):144305. PubMed ID: 31615243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gauge-origin dependence in electronic g-tensor calculations.
    Glasbrenner M; Vogler S; Ochsenfeld C
    J Chem Phys; 2018 Jun; 148(21):214101. PubMed ID: 29884060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance.
    Patchkovskii S; Strong RT; Pickard CJ; Un S
    J Chem Phys; 2005 Jun; 122(21):214101. PubMed ID: 15974722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals.
    Misenkova D; Lemken F; Repisky M; Noga J; Malkina OL; Komorovsky S
    J Chem Phys; 2022 Oct; 157(16):164114. PubMed ID: 36319402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic
    Masys ŠN; Jonauskas V; Rinkevicius Z
    J Phys Chem A; 2021 Sep; 125(37):8249-8260. PubMed ID: 34507490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of electronic g-tensors using coupled cluster theory.
    Gauss J; Kállay M; Neese F
    J Phys Chem A; 2009 Oct; 113(43):11541-9. PubMed ID: 19848425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and sublinear scaling computation of the electronic g-tensor at the density functional theory level.
    Glasbrenner M; Vogler S; Ochsenfeld C
    J Chem Phys; 2019 Jan; 150(2):024104. PubMed ID: 30646705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study on the electronic g-tensors of hydrophilic and hydrophobic nanodiamonds interacting with water.
    Masys Š; Rinkevicius Z; Tamulienė J
    J Chem Phys; 2020 Apr; 152(14):144302. PubMed ID: 32295368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations.
    Neese F
    J Chem Phys; 2005 Jan; 122(3):34107. PubMed ID: 15740192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules.
    Pennanen TO; Vaara J
    J Chem Phys; 2005 Nov; 123(17):174102. PubMed ID: 16375512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the existence of a natural common gauge-origin for the calculation of magnetic properties of atoms and molecules via gaugeless basis sets.
    Pelloni S; Lazzeretti P
    J Chem Phys; 2012 Apr; 136(16):164110. PubMed ID: 22559473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the EPR g-tensor from auxiliary density functional theory.
    Zuniga-Gutierrez B; Medel-Juarez V; Varona A; González Ramírez HN; Flores-Moreno R
    J Chem Phys; 2020 Jan; 152(1):014105. PubMed ID: 31914741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a density functional theory-based method for the calculation of the hyperfine A-tensor in periodic systems with the use of numerical and Slater type atomic orbitals: application to paramagnetic defects.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2008 May; 112(19):4521-6. PubMed ID: 18412322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters.
    Lazzeretti P
    J Chem Phys; 2012 Aug; 137(7):074108. PubMed ID: 22920104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT analysis of g and 13C hyperfine coupling tensors for model Ni(I)(CO)(n)L(m) (n = 1-4, L = H2O, OH-) complexes epitomizing surface nickel(I) carbonyls.
    Pietrzyk P; Podolska K; Sojka Z
    J Phys Chem A; 2008 Nov; 112(47):12208-19. PubMed ID: 18986126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.