These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31370540)

  • 1. Identification of key sites controlling protein functional motions by using elastic network model combined with internal coordinates.
    Zhang PF; Su JG
    J Chem Phys; 2019 Jul; 151(4):045101. PubMed ID: 31370540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Motions and Functionally Key Residues for Vitamin B12 Transporter BtuCD-BtuF Revealed by Elastic Network Model with a Function-Related Internal Coordinate.
    Su JG; Zhang X; Zhao SX; Li XY; Hou YX; Wu YD; Zhu JZ; An HL
    Int J Mol Sci; 2015 Aug; 16(8):17933-51. PubMed ID: 26247943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the Intrinsic Motions and Related Key Residues Responsible for the Twofold Channel Opening of Poliovirus Capsid by Using an Elastic Network Model Combined with an Internal Coordinate.
    Li J; Zhang H; Liu N; Ma YB; Wang WB; Li QM; Su JG
    ACS Omega; 2023 Jan; 8(1):782-790. PubMed ID: 36643418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge weights in a protein elastic network reorganize collective motions and render long-range sensitivity responses.
    Yu CC; Raj N; Chu JW
    J Chem Phys; 2022 Jun; 156(24):245105. PubMed ID: 35778086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal coordinate density of state from molecular dynamics simulation.
    Lai PK; Lin ST
    J Comput Chem; 2015 Mar; 36(8):507-17. PubMed ID: 25565300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally relevant protein motions: extracting basin-specific collective coordinates from molecular dynamics trajectories.
    Pan PW; Dickson RJ; Gordon HL; Rothstein SM; Tanaka S
    J Chem Phys; 2005 Jan; 122(3):34904. PubMed ID: 15740224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the influence of protein intrinsic dynamical properties on its thermal unfolding behavior.
    Su JG; Xu XJ; Li CH; Chen WZ; Wang CX
    J Biomol Struct Dyn; 2011 Aug; 29(1):105-21. PubMed ID: 21696228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry optimization for peptides and proteins: comparison of Cartesian and internal coordinates.
    Koslover EF; Wales DJ
    J Chem Phys; 2007 Dec; 127(23):234105. PubMed ID: 18154373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key residues for protein conformational transition using elastic network model.
    Su JG; Xu XJ; Li CH; Chen WZ; Wang CX
    J Chem Phys; 2011 Nov; 135(17):174101. PubMed ID: 22070286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal mode analysis as a method to derive protein dynamics information from the Protein Data Bank.
    Wako H; Endo S
    Biophys Rev; 2017 Dec; 9(6):877-893. PubMed ID: 29103094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional motions can be extracted from on-lattice construction of protein structures.
    Doruker P; Jernigan RL
    Proteins; 2003 Nov; 53(2):174-81. PubMed ID: 14517969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principle calculation of reduced masses in vibrational analysis using generalized internal coordinates: some crucial aspects and examples.
    Stare J
    J Chem Inf Model; 2007; 47(3):840-50. PubMed ID: 17487962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain Motions and Functionally-Key Residues of L-Alanine Dehydrogenase Revealed by an Elastic Network Model.
    Li XY; Zhang JC; Zhu YY; Su JG
    Int J Mol Sci; 2015 Dec; 16(12):29383-97. PubMed ID: 26690143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear response theory in dihedral angle space for protein structural change upon ligand binding.
    Omori S; Fuchigami S; Ikeguchi M; Kidera A
    J Comput Chem; 2009 Dec; 30(16):2602-8. PubMed ID: 19373827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes and allosteric communications in human serum albumin due to ligand binding.
    Ahalawat N; Murarka RK
    J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal Normal Mode Analysis (iNMA) Applied to Protein Conformational Flexibility.
    Frezza E; Lavery R
    J Chem Theory Comput; 2015 Nov; 11(11):5503-12. PubMed ID: 26574338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics.
    Mathiowetz AM; Jain A; Karasawa N; Goddard WA
    Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.