These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31370563)

  • 1. Flow fields around pinned self-thermophoretic microswimmers under confinement.
    Bregulla AP; Cichos F
    J Chem Phys; 2019 Jul; 151(4):044706. PubMed ID: 31370563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic simulations of self-phoretic microswimmers.
    Yang M; Wysocki A; Ripoll M
    Soft Matter; 2014 Sep; 10(33):6208-18. PubMed ID: 25012361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers.
    Heckel S; Bilsing C; Wittmann M; Gemming T; Büttner L; Czarske J; Simmchen J
    Adv Sci (Weinh); 2022 Aug; 9(24):e2105009. PubMed ID: 35839469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk.
    Wagner M; Roca-Bonet S; Ripoll M
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):43. PubMed ID: 33772651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phoretic and hydrodynamic interactions of weakly confined autophoretic particles.
    Kanso E; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044902. PubMed ID: 30709320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Propulsion of Janus Particles near a Brush-Functionalized Substrate.
    Heidari M; Bregulla A; Landin SM; Cichos F; von Klitzing R
    Langmuir; 2020 Jul; 36(27):7775-7780. PubMed ID: 32544339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.
    Wang A; Song Q; Ji B; Yao Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063031. PubMed ID: 26764827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced self-thermophoresis of Janus spheroidal nanoparticles.
    Miloh T; Nagler J
    Electrophoresis; 2018 Oct; 39(19):2417-2424. PubMed ID: 30010202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Microswimmers Speed Up in Confining Channels.
    Liu C; Zhou C; Wang W; Zhang HP
    Phys Rev Lett; 2016 Nov; 117(19):198001. PubMed ID: 27858454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions.
    Choudhary A; Chaithanya KVS; Michelin S; Pushpavanam S
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):97. PubMed ID: 34283325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.
    Fedosov DA; Sengupta A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6703-15. PubMed ID: 26223678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squirmer rods as elongated microswimmers: flow fields and confinement.
    Zantop AW; Stark H
    Soft Matter; 2020 Jul; 16(27):6400-6412. PubMed ID: 32582901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas flow driven by thermal creep in dusty plasma.
    Flanagan TM; Goree J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046402. PubMed ID: 19905456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slip Length Dependent Propulsion Speed of Catalytic Colloidal Swimmers near Walls.
    Ketzetzi S; de Graaf J; Doherty RP; Kraft DJ
    Phys Rev Lett; 2020 Jan; 124(4):048002. PubMed ID: 32058791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows.
    Fränzl M; Cichos F
    Nat Commun; 2022 Feb; 13(1):656. PubMed ID: 35115502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating Rheotaxis and Hydrodynamic Actuation using Asymmetric Gold-Platinum Phoretic Rods.
    Brosseau Q; Usabiaga FB; Lushi E; Wu Y; Ristroph L; Zhang J; Ward M; Shelley MJ
    Phys Rev Lett; 2019 Oct; 123(17):178004. PubMed ID: 31702241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opto-thermoelectric microswimmers.
    Peng X; Chen Z; Kollipara PS; Liu Y; Fang J; Lin L; Zheng Y
    Light Sci Appl; 2020; 9():141. PubMed ID: 32864116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-thermophoresis of laser-heated spherical Janus particles.
    Avital EJ; Miloh T
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):139. PubMed ID: 34791586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.