These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31370654)

  • 1. Erratum: The influence of distributed source regions in the formation of the nonlinear distortion component of cubic distortion-product otoacoustic emissions [J. Acoust. Soc. Am. 145(5), 2909-2931 (2019)].
    Vencovský V; Zelle D; Dalhoff E; Gummer AW; Vetešník A
    J Acoust Soc Am; 2019 Jul; 146(1):381. PubMed ID: 31370654
    [No Abstract]   [Full Text] [Related]  

  • 2. Erratum: Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans [J. Acoust. Soc. Am. 137(2), 679-689 (2015)].
    Christensen AT; Ordoñez R; Hammershøi D
    J Acoust Soc Am; 2015 Oct; 138(4):2131. PubMed ID: 26520295
    [No Abstract]   [Full Text] [Related]  

  • 3. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)].
    Whitehead ML
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365
    [No Abstract]   [Full Text] [Related]  

  • 4. Comment on "Modulation of the hair cell motor: a possible source of odd-order distortion" [J. Acoust. Soc. Am. 96, 2210-2215 (1994)].
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1994 Oct; 96(4):2583-4. PubMed ID: 7963039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the temporal behavior of distortion product otoacoustic emissions.
    Tubis A; Talmadge CL; Tong C
    J Acoust Soc Am; 2000 Apr; 107(4):2112-27. PubMed ID: 10790037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of DPOAEs in the guinea pig.
    Withnell RH; Shaffer LA; Talmadge CL
    Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensimetric detection of distortion product otoacoustic emissions with ear canal calibration.
    Sisto R; Cerini L; Sanjust F; Moleti A
    J Acoust Soc Am; 2017 Jul; 142(1):EL13. PubMed ID: 28764449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses [J. Acoust. Soc. Am. 140(3), 2027-2038 (2016)].
    Mertes IB; Leek MR
    J Acoust Soc Am; 2017 Feb; 141(2):781. PubMed ID: 28253644
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: experimental data.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):871-82. PubMed ID: 12942969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions.
    Johnson TA; Neely ST; Garner CA; Gorga MP
    J Acoust Soc Am; 2006 Jan; 119(1):418-28. PubMed ID: 16454296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1640-62. PubMed ID: 8817892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound calibration and distortion product otoacoustic emissions at high frequencies.
    Siegel JH; Hirohata ET
    Hear Res; 1994 Nov; 80(2):146-52. PubMed ID: 7896573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS; Keefe DH
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relationships between the fixed-f1, fixed-f2, and fixed-ratio phase derivatives of the 2f1-f2 distortion product otoacoustic emission.
    Tubis A; Talmadge CL; Tong C; Dhar S
    J Acoust Soc Am; 2000 Oct; 108(4):1772-85. PubMed ID: 11051504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.