These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31371283)

  • 1. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China.
    Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y
    Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China.
    Wang Y; Xu C; Li Y; Wu W; Gui L; Ren J; Yao S
    Infect Drug Resist; 2020; 13():867-880. PubMed ID: 32273731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-series analysis of tuberculosis from 2005 to 2017 in China.
    Wang H; Tian CW; Wang WM; Luo XM
    Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
    Kuan MM
    PeerJ; 2022; 10():e13117. PubMed ID: 36164599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model.
    Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R
    Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid seasonal prediction model for tuberculosis incidence in China.
    Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z
    BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model.
    Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J
    PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China.
    Zhao D; Zhang R
    J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonality and trend prediction of scarlet fever incidence in mainland China from 2004 to 2018 using a hybrid SARIMA-NARX model.
    Wang Y; Xu C; Wang Z; Yuan J
    PeerJ; 2019; 7():e6165. PubMed ID: 30671295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq.
    Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A
    Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China.
    Zhao D; Zhang H; Zhang R; He S
    BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model.
    Mao Q; Zhang K; Yan W; Cheng C
    J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network.
    Wang KW; Deng C; Li JP; Zhang YY; Li XY; Wu MC
    Epidemiol Infect; 2017 Apr; 145(6):1118-1129. PubMed ID: 28115032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal trends analysis of human brucellosis incidence in mainland China from 2004 to 2018.
    Wang Y; Xu C; Zhang S; Wang Z; Zhu Y; Yuan J
    Sci Rep; 2018 Oct; 8(1):15901. PubMed ID: 30367079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China.
    Yan W; Xu Y; Yang X; Zhou Y
    Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system.
    Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A
    BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.
    Wang YW; Shen ZZ; Jiang Y
    BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.