These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 31371736)

  • 1. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation.
    Li X; Shen Y; Sun JQ; Yang S
    Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic and pseudochaotic attractors of perturbed fractional oscillator.
    Zaslavsky GM; Stanislavsky AA; Edelman M
    Chaos; 2006 Mar; 16(1):013102. PubMed ID: 16599733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of 0-1 test for strange nonchaotic attractors.
    Gopal R; Venkatesan A; Lakshmanan M
    Chaos; 2013 Jun; 23(2):023123. PubMed ID: 23822488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos and subharmonic bifurcations of a soft Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation.
    Zhou L; Chen F
    Chaos; 2021 Nov; 31(11):113133. PubMed ID: 34881616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic motions with impact chatters in an impact Duffing oscillator.
    Luo ACJ; Zhu Y
    Chaos; 2024 May; 34(5):. PubMed ID: 38717420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of noise-induced strange nonchaotic attractors.
    Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.
    Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K
    Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of resonant-frequency mismatch on attractors.
    Wang X; Lai YC; Lai CH
    Chaos; 2006 Jun; 16(2):023127. PubMed ID: 16822030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing.
    Guan Y; Murugesan M; Li LKB
    Chaos; 2018 Sep; 28(9):093109. PubMed ID: 30278637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven duffing oscillator.
    Venkatesan A; Lakshmanan M; Prasad A; Ramaswamy R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3641-51. PubMed ID: 11088142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds.
    Liu A; Axås J; Haller G
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38531092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from classical to quantum behavior of the Duffing oscillator through a pseudo-Lyapunov-exponent.
    Ota Y; Ohba I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):015201. PubMed ID: 15697643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation and chaos detection of a fractional Duffing-van der Pol oscillator with two periodic excitations and distributed time delay.
    Zhang Y; Li J; Zhu S; Zhao H
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors.
    Munoz-Pacheco JM; Zambrano-Serrano E; Volos C; Jafari S; Kengne J; Rajagopal K
    Entropy (Basel); 2018 Jul; 20(8):. PubMed ID: 33265653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Features of a chaotic attractor in a quasiperiodically driven nonlinear oscillator.
    Kruglov VP; Krylosova DA; Sataev IR; Seleznev EP; Stankevich NV
    Chaos; 2021 Jul; 31(7):073118. PubMed ID: 34340355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
    Maslennikov OV; Nekorkin VI
    Chaos; 2016 Jul; 26(7):073104. PubMed ID: 27475064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasipotential approach to critical scaling in noise-induced chaos.
    Tél T; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems.
    Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL
    Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archetypal oscillator for smooth and discontinuous dynamics.
    Cao Q; Wiercigroch M; Pavlovskaia EE; Grebogi C; Thompson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046218. PubMed ID: 17155164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.