These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31372465)

  • 1. Potential of cereal-based agricultural residues available for bioenergy production.
    Rocha-Meneses L; Bergamo TF; Kikas T
    Data Brief; 2019 Apr; 23():103829. PubMed ID: 31372465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security.
    Li X; Liu N; You L; Ke X; Liu H; Huang M; Waddington SR
    PLoS One; 2016; 11(7):e0159061. PubMed ID: 27404110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China.
    Fu H; Chen Y; Yang X; Di J; Xu M; Zhang B
    Sci Total Environ; 2019 Feb; 653():758-764. PubMed ID: 30759601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.
    Vadrevu K; Lasko K
    J Environ Manage; 2015 Jan; 148():10-20. PubMed ID: 24502932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "More crop per drop": Exploring India's cereal water use since 2005.
    Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD
    Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies.
    Kumar JA; Sathish S; Prabu D; Renita AA; Saravanan A; Deivayanai VC; Anish M; Jayaprabakar J; Baigenzhenov O; Hosseini-Bandegharaei A
    Chemosphere; 2023 Aug; 331():138680. PubMed ID: 37119925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Straw use and availability for second generation biofuels in England.
    Glithero NJ; Wilson P; Ramsden SJ
    Biomass Bioenergy; 2013 Aug; 55():311-321. PubMed ID: 27667905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective.
    Glithero NJ; Ramsden SJ; Wilson P
    Energy Policy; 2013 Aug; 59(100):161-171. PubMed ID: 24926116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields.
    Haberl H; Erb KH; Krausmann F; Bondeau A; Lauk C; Müller C; Plutzar C; Steinberger JK
    Biomass Bioenergy; 2011 Dec; 35(12):4753-4769. PubMed ID: 22211004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration.
    Molina-Guerrero CE; Sanchez A; Vázquez-Núñez E
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28607-28622. PubMed ID: 32285389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on long-term impact of STCR based integrated fertilizer use on pearl millet (Pennisetum glaucum)-wheat (Triticum aestivum) cropping system in semi arid condition of India.
    Sharma VK; Pandey RN; Sharma BM
    J Environ Biol; 2015 Jan; 36(1):241-7. PubMed ID: 26536799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model.
    Ullah A; Ahmad I; Ahmad A; Khaliq T; Saeed U; M Habib-Ur-Rahman ; Hussain J; Ullah S; Hoogenboom G
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6745-6757. PubMed ID: 30632035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production.
    Dou F; Wight JP; Wilson LT; Storlien JO; Hons FM
    PLoS One; 2014; 9(12):e115598. PubMed ID: 25531758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol Potential of Energy Sorghum Grown on Marginal and Arable Lands.
    Tang C; Li S; Li M; Xie GH
    Front Plant Sci; 2018; 9():440. PubMed ID: 29686688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.