These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31372465)

  • 21. Bioenergy potential from crop residue biomass resources in Ethiopia.
    Tolessa A
    Heliyon; 2023 Feb; 9(2):e13572. PubMed ID: 36825179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and use of bioenergy feedstocks for semi-arid and arid lands.
    Cushman JC; Davis SC; Yang X; Borland AM
    J Exp Bot; 2015 Jul; 66(14):4177-93. PubMed ID: 25873672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced co-production of biohydrogen and algal lipids from agricultural biomass residues in long-term operation.
    Ren HY; Kong F; Zhao L; Ren NQ; Ma J; Nan J; Liu BF
    Bioresour Technol; 2019 Oct; 289():121774. PubMed ID: 31301947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges.
    Mouratiadou I; Stella T; Gaiser T; Wicke B; Nendel C; Ewert F; van der Hilst F
    Glob Change Biol Bioenergy; 2020 Jan; 12(1):71-89. PubMed ID: 32025242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agricultural residue availability in the United States.
    Haq Z; Easterly JL
    Appl Biochem Biotechnol; 2006; 129-132():3-21. PubMed ID: 16915628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Switchgrass yield on reclaimed surface mines for bioenergy production.
    Marra M; Keene T; Skousen J; Griggs T
    J Environ Qual; 2013; 42(3):696-703. PubMed ID: 23673936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative cereals can improve water use and nutrient supply in India.
    Davis KF; Chiarelli DD; Rulli MC; Chhatre A; Richter B; Singh D; DeFries R
    Sci Adv; 2018 Jul; 4(7):eaao1108. PubMed ID: 29978036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.
    Mishra A; Kumar A; Ghosh S
    3 Biotech; 2018 Mar; 8(3):142. PubMed ID: 29484281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions.
    Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M
    J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].
    Liu LH; Jiang JY; Zong LG
    Huan Jing Ke Xue; 2011 May; 32(5):1242-8. PubMed ID: 21780575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dataset of biomass waste of rice paddies and forest sectors supporting the assessment of the potential for bioenergy production in Taiwan.
    Chang KH; Lou KR; Ko CH
    Data Brief; 2019 Dec; 27():104613. PubMed ID: 31667323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products.
    Dias-Martins AM; Pessanha KLF; Pacheco S; Rodrigues JAS; Carvalho CWP
    Food Res Int; 2018 Jul; 109():175-186. PubMed ID: 29803440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triticale adaption and competence assessment result in the high lands of Ethiopia.
    Legesse W
    Commun Agric Appl Biol Sci; 2014; 79(4):54-61. PubMed ID: 26072574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First adaptation of quinoa in the Bhutanese mountain agriculture systems.
    Katwal TB; Bazile D
    PLoS One; 2020; 15(1):e0219804. PubMed ID: 31945062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.