These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31372557)

  • 1. Estimating sediment yield at Kaduna watershed, Nigeria using soil and water assessment tool (SWAT) model.
    Daramola J; Ekhwan TM; Mokhtar J; Lam KC; Adeogun GA
    Heliyon; 2019 Jul; 5(7):e02106. PubMed ID: 31372557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models.
    Abdelwahab OMM; Ricci GF; De Girolamo AM; Gentile F
    Environ Res; 2018 Oct; 166():363-376. PubMed ID: 29935449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the impacts of agricultural best management practices on runoff, sediment, and crop yield in an agriculture-pasture intensive watershed.
    Rasoulzadeh Gharibdousti S; Kharel G; Stoecker A
    PeerJ; 2019; 7():e7093. PubMed ID: 31308995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Effectiveness of Best Management Practices On Soil Erosion Reduction Using the SWAT Model: for the Case of Gumara Watershed, Abbay (Upper Blue Nile) Basin.
    Gashaw T; Dile YT; Worqlul AW; Bantider A; Zeleke G; Bewket W; Alamirew T
    Environ Manage; 2021 Aug; 68(2):240-261. PubMed ID: 34105015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling runoff-sediment influx responses to alternative BMP interventions in the Gojeb watershed, Ethiopia, using the SWAT hydrological model.
    Anteneh Y; Alamirew T; Zeleke G; Kassawmar T
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22816-22834. PubMed ID: 36308651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming equifinality: time-varying analysis of sensitivity and identifiability of SWAT runoff and sediment parameters in an arid and semiarid watershed.
    Wu L; Liu X; Chen J; Yu Y; Ma X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31631-31645. PubMed ID: 35006572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Impact of Land Use Dynamics on Hydrology and Sedimentation of Megech Dam Watershed, Ethiopia.
    Assfaw AT
    ScientificWorldJournal; 2020; 2020():6530278. PubMed ID: 33162843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.
    Chiang LC; Liao CJ; Lu CM; Wang YC
    Environ Monit Assess; 2021 Jul; 193(8):520. PubMed ID: 34313852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamflow and sediment yield estimation, and area prioritization for better conservation planning in the Dawe River watershed of the Wabi Shebelle River Basin, Ethiopia.
    Roba NT; Kassa AK; Geleta DY; Harka AE
    Heliyon; 2021 Dec; 7(12):e08509. PubMed ID: 34934833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia.
    Mtibaa S; Hotta N; Irie M
    Sci Total Environ; 2018 Mar; 616-617():1-16. PubMed ID: 29107774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.
    Bonumá NB; Rossi CG; Arnold JG; Reichert JM; Minella JP; Allen PM; Volk M
    J Environ Qual; 2014 Jan; 43(1):55-66. PubMed ID: 25602540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.
    Nerantzaki SD; Giannakis GV; Efstathiou D; Nikolaidis NP; Sibetheros IΑ; Karatzas GP; Zacharias I
    Sci Total Environ; 2015 Dec; 538():288-97. PubMed ID: 26311584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water and sediment transport modeling of a large temporary river basin in Greece.
    Gamvroudis C; Nikolaidis NP; Tzoraki O; Papadoulakis V; Karalemas N
    Sci Total Environ; 2015 Mar; 508():354-65. PubMed ID: 25497675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations.
    Jalowska AM; Yuan Y
    J Am Water Resour Assoc; 2019 Feb; 55(1):209-227. PubMed ID: 34434040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan.
    Chiang LC; Chuang YT; Han CC
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of soil data resolution on SWAT model stream flow and water quality predictions.
    Geza M; McCray JE
    J Environ Manage; 2008 Aug; 88(3):393-406. PubMed ID: 17475392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification and simulation of nutrient sources at watershed scale in Mississippi.
    Risal A; Parajuli PB
    Sci Total Environ; 2019 Jun; 670():633-643. PubMed ID: 30909041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.