These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31373012)
1. A novel protocol for cryopreservation of paediatric red blood cell units allows increased availability of rare blood types. Larsson L; Larsson S; Derving J; Watz E; Uhlin M Vox Sang; 2019 Oct; 114(7):711-720. PubMed ID: 31373012 [TBL] [Abstract][Full Text] [Related]
2. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Lelkens CC; de Korte D; Lagerberg JW Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217 [TBL] [Abstract][Full Text] [Related]
3. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415 [TBL] [Abstract][Full Text] [Related]
4. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Turner TR; Clarke G; Denomme GA; Skeate R; Acker JP Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642 [TBL] [Abstract][Full Text] [Related]
5. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Bandarenko N; Cancelas J; Snyder EL; Hay SN; Rugg N; Corda T; Joines AD; Gormas JF; Pratt GP; Kowalsky R; Rose M; Rose L; Foley J; Popovsky MA Transfusion; 2007 Apr; 47(4):680-6. PubMed ID: 17381627 [TBL] [Abstract][Full Text] [Related]
6. A Canadian perspective on the use and preparation of cryopreserved red cell concentrates. Turner TR; Acker JP Transfus Apher Sci; 2020 Aug; 59(4):102853. PubMed ID: 32651009 [TBL] [Abstract][Full Text] [Related]
8. Modification of deglycerolization procedure improves processing and post-thaw quality of cryopreserved sickle trait red cell concentrates. Phan C; Kurach J; Foxcroft M; Xu D; Olafson C; Clarke G; Acker JP Cryobiology; 2024 Jun; 115():104903. PubMed ID: 38734363 [TBL] [Abstract][Full Text] [Related]
9. Gamma-irradiation of deglycerolized red cells does not significantly affect in vitro quality. Winter KM; Johnson L; Webb RG; Marks DC Vox Sang; 2015 Oct; 109(3):231-8. PubMed ID: 25953334 [TBL] [Abstract][Full Text] [Related]
10. Extended storage of AS-1 and AS-3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS-3 using an automated closed system. Bandarenko N; Hay SN; Holmberg J; Whitley P; Taylor HL; Moroff G; Rose L; Kowalsky R; Brumit M; Rose M; Sawyer S; Johnson A; McNeil D; Popovsky MA Transfusion; 2004 Nov; 44(11):1656-62. PubMed ID: 15504173 [TBL] [Abstract][Full Text] [Related]
11. Cryopreservation of red blood cells. Lagerberg JW Methods Mol Biol; 2015; 1257():353-67. PubMed ID: 25428017 [TBL] [Abstract][Full Text] [Related]
12. Use of supernatant osmolality and supernatant refraction to assess the glycerol concentration in glycerolized and deglycerolized previously frozen RBC. Robert Valeri C; Ragno G Transfus Apher Sci; 2007 Apr; 36(2):133-7. PubMed ID: 17376744 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates. Korsak J; Goller A; Rzeszotarska A; Pleskacz K Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153 [TBL] [Abstract][Full Text] [Related]
14. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850 [TBL] [Abstract][Full Text] [Related]
15. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Valeri CR; Ragno G; Van Houten P; Rose L; Rose M; Egozy Y; Popovsky MA Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213 [TBL] [Abstract][Full Text] [Related]
16. Effects of pre-freeze pathogen reduction with riboflavin and UV light on red cells stored post-thaw in AS-3 additive solution. Kutac D; Bohonek M; Landova L; Staskova E; Blahutova M; Lovecky J; Horacek JM; Stansbury LG; Hess JR Transfusion; 2023 May; 63(5):1067-1073. PubMed ID: 36938976 [TBL] [Abstract][Full Text] [Related]
17. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Holovati JL; Wong KA; Webster JM; Acker JP Transfusion; 2008 Aug; 48(8):1658-68. PubMed ID: 18482179 [TBL] [Abstract][Full Text] [Related]
18. Comparison of automated and manual methods for washing red blood cells. Proffitt S; Curnow E; Brown C; Bashir S; Cardigan R Transfusion; 2018 Sep; 58(9):2208-2216. PubMed ID: 30204951 [TBL] [Abstract][Full Text] [Related]
19. Cryopreservation of rare pediatric red blood cells for support following bone marrow transplant. Kelly K; Helander L; Hazegh K; Stanley C; Moss R; Mack S; Sanders ML; Gurley J; McKinney C; Dumont LJ; Annen K Transfusion; 2022 May; 62(5):954-960. PubMed ID: 35403731 [TBL] [Abstract][Full Text] [Related]
20. Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Pallotta V; D'Amici GM; D'Alessandro A; Rossetti R; Zolla L Blood Cells Mol Dis; 2012 Apr; 48(4):226-32. PubMed ID: 22424604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]