BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31373172)

  • 61. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.
    Ha M; Xia Y; Green AA; Zhang W; Renn MJ; Kim CH; Hersam MC; Frisbie CD
    ACS Nano; 2010 Aug; 4(8):4388-95. PubMed ID: 20583780
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 3D Printing of Photocuring Elastomers with Excellent Mechanical Strength and Resilience.
    Ji Z; Zhang X; Yan C; Jia X; Xia Y; Wang X; Zhou F
    Macromol Rapid Commun; 2019 Apr; 40(8):e1800873. PubMed ID: 30779410
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.
    Lee YK; Kim J; Kim Y; Kwak JW; Yoon Y; Rogers JA
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833596
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications.
    Maldonado N; Amo-Ochoa P
    Chemistry; 2021 Feb; 27(9):2887-2907. PubMed ID: 32894574
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics.
    Marchal W; Vandevenne G; D'Haen J; Calmont de Andrade Almeida A; Durand Sola MA; van den Ham EJ; Drijkoningen J; Elen K; Deferme W; Van Bael MK; Hardy A
    Nanotechnology; 2017 May; 28(21):215202. PubMed ID: 28471754
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Organic Electronics: An El Dorado in the Quest of New Photocatalysts for Polymerization Reactions.
    Dumur F; Gigmes D; Fouassier JP; Lalevée J
    Acc Chem Res; 2016 Sep; 49(9):1980-9. PubMed ID: 27560545
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing.
    M'Barki A; Bocquet L; Stevenson A
    Sci Rep; 2017 Jul; 7(1):6017. PubMed ID: 28729671
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems.
    Zhang P; Wang F; Yu M; Zhuang X; Feng X
    Chem Soc Rev; 2018 Oct; 47(19):7426-7451. PubMed ID: 30206606
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Printable Functional Chips Based on Nanoparticle Assembly.
    Huang Y; Li W; Qin M; Zhou H; Zhang X; Li F; Song Y
    Small; 2017 Jan; 13(4):. PubMed ID: 28102576
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Advancing the field of 3D biomaterial printing.
    Jakus AE; Rutz AL; Shah RN
    Biomed Mater; 2016 Jan; 11(1):014102. PubMed ID: 26752507
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of graphite and carbon black ratios on conductive ink performance.
    Phillips C; Al-Ahmadi A; Potts SJ; Claypole T; Deganello D
    J Mater Sci; 2017; 52(16):9520-9530. PubMed ID: 32025045
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Printable giant magnetoresistive devices.
    Karnaushenko D; Makarov D; Yan C; Streubel R; Schmidt OG
    Adv Mater; 2012 Aug; 24(33):4518-22. PubMed ID: 22761017
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks.
    Zhang M; Li L; Lin Q; Tang M; Wu Y; Ke C
    J Am Chem Soc; 2019 Apr; 141(13):5154-5158. PubMed ID: 30912659
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks.
    Karagiannidis PG; Hodge SA; Lombardi L; Tomarchio F; Decorde N; Milana S; Goykhman I; Su Y; Mesite SV; Johnstone DN; Leary RK; Midgley PA; Pugno NM; Torrisi F; Ferrari AC
    ACS Nano; 2017 Mar; 11(3):2742-2755. PubMed ID: 28102670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.